Local Debug

Summary

Local debugger provides the following features in order for programs running can be debugged on the spot.

Setting breakpoints

Debug View lets you set breakpoints for analyzing runtime program states.

Step debugging

Programs can be stepped through to see the code flow and variable states.
Step filtering

Certain methods can be excluded and prevented from being stepped-in.

Evaluating Expressions

Running programs can be status checked without being halted.

Variables View

Variable values can be checked while the programs are running.

[image: image1.jpg]% Dobug 57 Sanere]

(= arablos O Broakpairts &3

% |

X % B o W

531 <erminaied: st [ave Applicaton]
& Sterminated test st atlocalhos 45!
a1 erminated, 2wt value: 1> CHProgram Fles#latabiie

@ st fine: &3] = ini)
e test line: 28] -init)
B tost line: 25] - init)

1) testjava 55 _[J) Empjava |

= B(B= Outine 2
4 pwblio static vera 1mish) ¢ AR
it int 1 # test
n VestorcEn> v = new Vectorceuws () 4= imoo declratons
1 Enp enp = nuil; = O, test
= B © ® main(String[1)
e Tor(1=0; 1<10;1++| | o % nit)
- enp = new Tap(1);
o Syster.cut.priac 11)5
V. e (o) 5
)
)
I E

|
<terminatod> toct [Java Application] CWProgram Filas#avafral.

50 Tibirjavaw,oxe (2008 4, 12 G= 2271

[image: image2.jpg]Vector<Ewpr v = mew Vector<Zmpr(S);
Zup emp - null;

© Toagle Breapoint
Dsable Breaknoin!

1o Annotation chlel

Add Bagkmart,
Add Task,
Show Cuick Dif Chlishits
Show Line Bumbers

Folding 5

idances Files¥#JavsHire . 5.0.17

Aspect] References >

Brealpaint Propertes,

[image: image3.jpg][00- Veriables [@ Breakpaints £3° R % <

© TN
o s ing: 2l - nit < @2 fo File

© test lne: 28It g0y

X FRemuve
4 Ramave Al
Selectdl Ctled
(2 Comy culc
Baste Gl

9, Euport Broakpoints,
o Import Ereakpoints,

Breskpoint Fropertes,., AEnter

[image: image4.jpg]4 Servers | SR
5 0 test Lava Applcation]
.88 festest at locahost 4451
£ 4 Thread [main] (Suspende (breakpoint et line 23 ntests)
it i
st man{Stina 1y ine: 14
o CH#Program Filostilavattirel 5 0. Mbirtjavaw, ove (2008 4, 2, 9 22711}

[image: image5.jpg]

Manual

Setting breakpoints

You can set breakpoints as debugging points to analyze any lines of code in question.

Add/remove breakpoints

Double-click the marker bar on the line you want to toggle breakpoints, or use the context menu.

Disable breakpoints

Marker bar’s context menu lets you disable breakpoints so that you do not need to remove them in order to temporarily disable them, and thus let the code execution run through.
Breakpoints View
The entire set of breakpoints can be conveniently managed in the Breakpoints View.

Hit Count

Monitors how many hits a given line has received in an execution run, and halts the program when it reaches a preset value.

Step-wise debugging

Programs can be stepped over or in from breakpoints for debugging purposes.[image: image6.jpg]

[image: image7.jpg]

[image: image8.jpg]

Step Into(F5)
Step a line, and if it is a method call, step into the method code block. Used for checking the method’s implementation and functionality.

Step Over(F6)
Step a line, and does not step in even if it is a method call.

Step Return(F7)
Exits the current method, and stops on the line of the method’s call.

.
Resume(F5)
Runs the program until end of program or another breakpoint.

Suspend
Pauses the currently running program’s thread. This displays the current call stack, as well as local and other viewable variables in the Variables View.

Drop to Frame
Jumps back to the first line of the current stack frame. Used for re-starting the execution of the current method.

Terminate
Ends and exits the program.

Step filtering

Step filtering is a feature such that if a program is a filtered (targeted) program, it works identically as step-over functionality, and if it is not such a program, it works identically as step-into functionality. Debug View’s Use Step Filters button activates this feature.[image: image9.jpg]

[image: image10.jpg]

[image: image11.jpg]

[image: image12.jpg]erptoences et

@

Gonera 5

Smaras vt

marssens

a

Se3act Complr

Lo ienagomen:

van

Inca e

oy Agent Cota

ki

= ippesrnce

ke

Cote Comrsge

& Codo e
Cormpir

Sony
Dt Formaners
Hacp Wiy
Lokl Svucrs
Bt Dl

e

¥ iatoa s
Tt

Prnetis Bl Fﬂﬂ

Step riering

Stap s 519 ool hn th “Ueo Siop Fllors' gl e cthtas
7 Ls St Fllore
Detined sip ftrs

T eombms
O s eomaun»

O shas

0 Seane

0 ki

O sogoma.

g @sn-

O = s

B G jovalans ClassLoaer

I Fife surhele mathods Geguires W suppor
I Pl st aers

I Filor copsructors

7 Stap tarouch flors

st e,
0 Sl
addpackages
Bee
Seeet Al
Ossslect Al

Fosors botsus | 2pply

[image: image13.jpg][Empjava [0 festjava 57\ fu; ClassLoaderclass %

g
1o

"

e 22

Publio statio veid init() (
nt 1
ectar e v
Brp ey = null:

impor declaratons
©, teat

o * main(Singl1)
o % init)

e Vector<Enp> (5] :

£or (1707 1103344
e = new mw(1);
Systen. out.princ (1 ;

v.ada(enp) ;

]
ol

=l

RN e T

[image: image14.jpg]B Console & 2|
test [ava Application] !
o1

I

[

EreselckHSHAIovaliolEpress ooy

BLic static void imiz(| |
e
o Vector<Inps v - new Vesuor<Bups(3);
Eap cnp - null;

i Obloct ciass

£or (1-0; 110, 144
emp - new Bwp (il

Sravam et s (17
(ihastomt 7

«

B (4 v Vector B> (ic=15) A
o capaciyincraments 0
slementCaunt= |
5o slemeniataz Obiect(s] (0=2%)

Sea [M=Emp (03571
= S0
& rame=nul
& [=rul
o
il

S Outlino 22 S
R o T

= import declaratons
-0, test
© ¢ main(Stingl)
o ¢ i)

[image: image15.jpg](17 testiava 13
 Inspest Cestifst
B Display Chlshits0

L) Emp.java

cu
Copy
Easto
Select Al
5 Conaals [, End/Roplace., CrlsF
Consale .
(BCm=el

s

= B (5) 2

)

ariables % Breakpolnts (27 Expresslons 7

%
S Vactarde> (d=15)
capaciyncrement= 0
elementCoun= 6
= ¢ elemenata= Oblect[0] =39

3 e o
faEm be
ge it les
ge Btm b

ey
s

* R

[image: image16.jpg]52 Expressions 23 & édd Visteh Expresslor S|

2 Expressicn

Cselectal ctia ~eapacity ()= 62 Evpressions &5
opy Expressions Cule " capacty (-6
3 Fernave = actor B> (1d-15]
44 Femova Al " eapacty0-
Eind CuleF
Gherie Valie <
Shaw Stucire As » | Ensble

Diszble. Q

il
Edit Watch Expression
Eeavaluste Waich Expression

[image: image17.jpg]G]
(o Lol et} '

< capactyincrements 0
© elementCourtz §
bjecil5] (=251
)

copaT™

Filter synthetic methods

Filters out all synthetic methods. Synthetic methods are methods which the compiler artificially creates and includes in the byte code to satisfy certain programming language requirements when compiling a particular class. These methods usually are not to be debugged by application developers.

Filter static initializers

Filters out all static initializers and static member initializations.

Filter constructors

Filters out all constructors.

Step through filters

Default option for Step filtering
Evaluating_Expressions
Display
Display View allows you to check instances’ values or their alignments without halting programs. It allows printing instance values or running particular methods to check status information.

1. Breakpoint or step to your desired part of code.

2. From the menu, choose Window > Show View > Display, to display the Display View.

3. Enter a name of an object or method to evaluate, and highlight the selected text.

4. Click the “Display Result Evaluating Selected Text” on the top right of the Display View.[image: image18.jpg]FEEIEEY Ml
Epa1szsaae

it Evpressions 52

oy Evprossians
| 36 Remare
oI5 Remove &l
“veapsciv(]" | End

, Changs Viluo,

Qualiied tpe name:

En [EETERr|

Detail formater code snippet (CtlsSpacs for cods assisb|

£ uld Watch Expression CEETR pe————

DiEetie:

415 ch el

1% Enablo tie dotall rmator

T[] conen

G Expressions £2
H = Vector<©> (d=19)

E
& [0:=Emp (=27
& [1]=Emp (=23
& [3=Emp (=31
& [4:=Emp (i
veapacity(y

) I Y 1 |

[image: image19.jpg](- Verablss 23 0 Breakpoints =)
Name [vae I
0 o v VibrE T
i o e SRR
Select &l Cua
- Copy Yariablos aris
Find cire

hange Value,

pen Declared Tupe
Cpen Deslared Typs Herarchy

5 Create Watch Expression

L Inspest

Enfer a naw value fr |

T

I

[image: image20.jpg]5 Debug 524 Servers)
5 test LJava Applcatin]
8 tes 2 Iocahhostis
1 Thiead lmein] (Guspended (breskpoin tlne 26 i test)

RN o veced o
I Ci¥imeHaN50. | GpenDeclaed Typa Mrachy
Copy Stack. ik
£ e
e o =
sten e "

‘ Stop Retum F

[image: image21.jpg]©9- Vatlables 5 %o Breakpoinis|

<t =7~ 0

Narme

capactuincrement
elementCount
elemenDala
madCourt

[Valuo I
T

Vesior<E> (d=18)
0
0
Object(s] (=27
0

Inspect

Display View’s downside is that it always displays in Strings. You can use Inspect feature instead to further inspect objects.

1. Choose an object from the editor or from the Display View.

2. Choose Inspect from the context menu, or use Ctrl+Shift+I.

Watch
Variables can be continuously monitored once they are added to the watch list. The Watch feature can also handle expressions and lets you monitor its evaluated result just the same as with any variable.

1. Choose an expression to track from the editor or the Display View.

2. From the context menu, choose Watch.

3. Watch pane gets added on the Expression View.

4. To add expressions to watch, choose Add Watch Expression... from the Expressions View’s context menu.

Configure an object for Watch.
Adding an optional formula in the Expressions view.
Viewing logical structures

You can inspect object and instances closely in a compact manner by using Show Logical Structure option. Click the Show Logical Structure button in the View toolbar.

Detail formatter

Detail formatter lets you choose display option for viewing instance types in the Details panel, which leverages objects’ detail formatter, or just to String Methods. In order to set detail formatter, choose an expression from the Expressions View, then choose New Detail Formatter from the context menu. Then in the dialog, formulate the expression you want to monitor.
Modifying variable values

You can change variable values on-the-fly while debugging to test your code.

1. Choose a variable from the Variable View.

2. Right-click to bring up the context menu, choose Change Value, then enter a value.

Hot Code Replace

You can change the source code on-the-fly while in the debugging mode, and this feature is called Hot Code Replace. Change any source code in the editor, press Ctrl+S to save, and it will automatically be re-compiled into the currently running program. This works in all cases except when you add new member variables or methods.

Drop to Frame

While debugging, you can use Drop to Frame feature to jump back to the very beginning of the current method. (Supported in VM versions 1.4 or higher)

1. From the Debug View, choose a stack frame for your target method.

2. Click the Drop to Frame button from the view toolbar, or choose Drop to Frame from the context menu after right-clicking.

3. Current line will jump to the beginning of the method.

Variables View

You can check live variable values from the Variables View.

Displaying Variables View

From the Debug Perspective, you can access the Variables View as below.

Sample
You can use the following Java source archive to test the debug features mentioned above.

debug_sample.zip
References

Eclipse Help - Java development user guide

http://help.eclipse.org/help32/topic/org.eclipse.jdt.doc.user/concepts/clocdbug.htm

[http://help.eclipse.org/help32/topic/org.eclipse.jdt.doc.user/concepts/clocdbug.htm]

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

