File Manage Service
Summary
Common functions are provided to handle attached files and others required to handle the business logic. File list inquiry and file download functions can be used and file registration provides client JavaScript and usage sample.
This function uses the File Upload/Download function of the execution environment of e-government standard framework.

Subscription
The common function for file upload is largely composed of EgovFileMngUtil class that uses MultipartRequest to parse a file sent to the server and store the information in the disk and EgovFileMngService service for file information management. (refer to the related sources)
The part that handles file upload in JSP is based on Dynamic HTML and the script for the function is included in EgovMultiFile.js. Organize them according to How to Use on the screen of a function that needs upload.
Associated Class Diagram

Related Sources
	Type
	Target source name
	Note

	Controller
	egovframework.com.cmm.web.EgovFileMngController.java
	controller class for file upload and inquiry

	Controller
	egovframework.com.cmm.web.EgovFileDownloadController.java
	controller class for file download

	Service
	egovframework.com.cmm.service.EgovFileMngService.java
	service interface for file management

	ServiceImpl
	egovframework.com.cmm.service.impl.EgovFileMngServiceImpl.java
	Service implementation class for file management

	VO
	egovframework.com.cmm.service.FileVO.java
	VO class for file management

	DAO
	egovframework.com.cmm.service.imp.FileManageDAO.java
	Data processing class for file information management

	Component
	egovframework.com.cmm.service.EgovFileMngUtil.java
	Util class for file generation and file information storing in database

	JSP
	/WEB-INF/jsp/egovframework/cmm/fms/EgovFileList.jsp
	List inquiry page for file list inquiry and download handling

	js
	/js/egovframework/cmm/fms/EgovMultiFile.js
	Javascript file for file upload handling

Related table
	Table name
	Table name (English)
	Notes

	File information
	COMTNFILE
	Manage file header information

	File detail information
	COMTNFILEDETAIL
	Manage file detail information

Environmental settings
The followings are the items for file upload function and its environment setup.

context-common.xml

 <!-- MULTIPART RESOLVERS -->

 <!-- regular spring resolver -->

 <bean id="spring.RegularCommonsMultipartResolver"

 class="org.springframework.web.multipart.commons.CommonsMultipartResolver">

 <property name="maxUploadSize" value="100000000" />

 <property name="maxInMemorySize" value="100000000" />

 </bean>

 <!-- custom multi file resolver -->

 <bean id="local.MultiCommonsMultipartResolver"

 class="egovframework.com.cmm.web.EgovMultipartResolver">

 <property name="maxUploadSize" value="100000000" />

 <property name="maxInMemorySize" value="100000000" />

 </bean>

This common function handles multi-file uploading. Therefore you have to register egovframework.com.cmm.web.EgovMultipartResolver class as MultiCommonsMultipartResolver and, if required, change the value of maxUploadSize, maxInMemorySize to specify the maximum uploadable file size. ※ Add spring.RegularCommonsMultipartResolver with the default value.

context-properties.xml

 <bean name="propertiesService" class="egovframework.rte.fdl.property.impl.EgovPropertyServiceImpl"

 destroy-method="destroy">

 <property name="properties">

 <map>

 <entry key="pageUnit" value="10"/>

 <entry key="pageSize" value="10"/>

 <entry key="Globals.fileStorePath" value="/product/jeus/egovProps/upload/"/>

 </map>

 </property>

 </bean>

The value of Globals.fileStorePath specifies the physical directory location where a file can be stored. Indidate the File.seperator that suits the operating system at the end of the address.

context-idgen.xml

<bean name="egovFileIdGnrService"

class="egovframework.rte.fdl.idgnr.impl.EgovTableIdGnrService"

destroy-method="destroy">

<property name="dataSource" ref="dataSource" />

<property name="strategy" ref="fileStrategy" />

<property name="blockSize"
value="10"/>

<property name="table"

value="COMTECOPSEQ"/>

<property name="tableName"
value="FILE_ID"/>

</bean>

<bean name="fileStrategy"

class="egovframework.rte.fdl.idgnr.impl.strategy.EgovIdGnrStrategyImpl">

<property name="prefix" value="FILE_" />

<property name="cipers" value="15" />

<property name="fillChar" value="0" />

</bean>

· In order to use ID Generation Service, you have to add COMTECOPSEQ에 FILE_ID, the sequence storing table.
 CREATE TABLE COMTECOPSEQ (table_name varchar(16) NOT NULL,

 next_id DECIMAL(30) NOT NULL,

 PRIMARY KEY (table_name));

 INSERT INTO COMTECOPSEQ VALUES('FILE_ID','0');

Manual
When the above settings are all completed, carry out the additional coding in the following 4 cases according to the business logic that uses file management.
The Javascript used in EgovFileList.jsp for file inquiry and file deletion uses Form name as frm. It is recommended to use the Form name as it is, in order to reduce workload.
File Upload (first registration)

JSP/Script (File Upload)

Any form used to upload a file should conform to the following type.

 <form name="frm" method="post" enctype="multipart/form-data" >

 <input type="hidden" name="posblAtchFileNumber" value="number of maximum registerable files" />

 </form>

Before registering a file, register it in the relevant page to be able to use EgovMultiFile.js.

 <script type="text/javascript" src="<c:url value='/js/egovframework/cmm/fms/EgovMultiFile.js'/>" ></script>

Insert the following HTML codes and scripts so that the file object to be used in the script and the locations for the file object can be specified.
 <table width="680px" cellspacing="0" cellpadding="0" border="0" align="center" class="UseTable">

 <tr>

 <td><input name="file_1" id="egovComFileUploader" type="file" /></td>

 </tr>

 <tr>

 <td>

 <div id="egovComFileList"></div>

 </td>

 </tr>

 </table>

Add the script where the HTML code ends. In the following code sample, though document.frm.posblAtchFileNumber.value is not actually used, it is to contain the number of maximum files in the form and you have to add it. If there is not value, the default values are three, but can be changed if required.
 <script type="text/javascript">

 var maxFileNum = document.frm.posblAtchFileNumber.value;

 if(maxFileNum==null || maxFileNum==""){

 maxFileNum = 3;

 }

 var multi_selector = new MultiSelector(document.getElementById('egovComFileList'), maxFileNum);

 multi_selector.addElement(document.getElementById('egovComFileUploader'));

 </script>

If you complete the script and HTML code and call the operation screen, you can view the following screen. When the files are registered to the maximum number, the Find File button is disabled. You can delete a file object by pressing Delete button.

Controller (File Upload)

In the controller for operation business handling, add MultipartHttpServletRequest as an input item for the method to receive it.
import egovframework.com.cmm.service.EgovFileMngService;

import egovframework.com.cmm.service.EgovFileMngUtil;

@Resource(name="EgovFileMngService")

private EgovFileMngService fileMngService;

@Resource(name="EgovFileMngUtil")

private EgovFileMngUtil fileUtil;

 public String insertBoardArticle(

final MultipartHttpServletRequest multiRequest,

@ModelAttribute("searchVO") BoardVO boardVO,

@ModelAttribute("board") Board board,

SessionVO sessionVO,

ModelMap model,

SessionStatus status) throws Exception{

List<FileVO> _result = null;

String _atchFileId = "";

final Map<String, MultipartFile> files = multiRequest.getFileMap();

if(!files.isEmpty()){

 result = fileUtil.parseFileInf(files, "BBS", 0, "", "");

 _atchFileId = fileMngService.insertFileInfs(_result); //When the file is created, return the created attached file ID.

}

 }

· The parseFileInf method of EgovFileMngUtil class has five arguments. Each argument is file object, value, fine serial number, file ID and storing path, respectively. If a file ID is an empty string or null, it is newly created by using IDGenerationService.
· The storing path is an empty string or null, the file storing path specified in context-properties.xm is used and, for fine serial number, the first registration is set to 0.
· The distinct value is used to create a file name when the actual file is stored in a physical location under a changed name. According to the current file creation rule, the format is “distinct value”+“TimeStamp value in format of yyyyMMddhhmmssSSS”+“file key”
File Select

1. When confirmed that there is an attached file in the business logic, the attached file ID registered in the posting is sent to the parameter as shown in the following sample.
2. When the file list inquiry is completed, the stored file name and size are indicated in the format of new text document.txt [405 byte].
3. For File Select, the button to delete a file is not disabled and only the link for file download exist.
 <c:import url="/cmm/fms/selectFileInfs.do" >

 <c:param name="param_atchFileId" value="${result.atchFileId}" />

 </c:import>

File Delete

1. This is used to delete the attached file form the business logic (modify posts, etc.). It sends the registered ID of the attached file to the parameter as in File Select.
2. Contrary to File Select, there is no file download link and Delete button is enabled to delete files.
 <c:import url="/cmm/fms/selectFileInfsForUpdate.do" >

 <c:param name="param_atchFileId" value="${result.atchFileId}" />

 </c:import>

· Submit() occurs for the whole screen when a file is deleted. Therefore you have to specify the page for return.
· To do so, add the following HTML object to the business function page to be deleted in order to specify the page for return.
<code html>

 <form name="frm" method="post">

 <input type="hidden" name="returnUrl" value="<c:url value='/cop/bbs/forUpdateBoardArticle.do'/>"/>

 </form>

</code>

File Upload (modified registration)

The form used to upload a file should conform to the following format.

 <form name="frm" method="post" enctype="multipart/form-data" >

 <input type="hidden" name="posblAtchFileNumber" value="number of maximum registerable files" />

 </form>

JSP/Script (File Upload - modified registration)

This is used to attach or delete a file when modifying in the business logic. Currently in the relevant module, the file deletion and storing are separated and treated as independent transactions. You have to register EgovMultiFile.js to the relevant page in order to use it as in the first registration.
 <script type="text/javascript" src="<c:url value='/js/egovframework/cmm/fms/EgovMultiFile.js'/>" ></script>

As above mentioned, since modification is carried out in the way of deleting or registering a file, the file input and deletion areas should be expressed in one operation screen. Inquiry and deletion for file lists are handled in the same way with file deletion. Prepare the following HTML code for file stacking.
 <div id="file_upload_posbl" style="display:none;" >

 <table width="680px" cellspacing="0" cellpadding="0" border="0" align="center" class="UseTable">

 <tr>

 <td><input name="file_1" id="egovComFileUploader" type="file" /></td>

 </tr>

 <tr>

 <td>

<div id="egovComFileList"></div>

 </td>

 </tr>

 </table>

 </div>

 <div id="file_upload_imposbl" style="display:none;" >

 <table width="680px" cellspacing="0" cellpadding="0" border="0" align="center" class="UseTable">

 <tr>

 <td><spring:message code="common.imposbl.fileupload" /></td>

 </tr>

 </table>

 </div>

The division into file_upload_posbl and file_upload_imposbl is for message processing, needing a modification.
Add the script where the HTML code ends. In the following code sample, though document.frm.posblAtchFileNumber.value is not actually used, it is to contain the number of maximum uploadable files in the form and you have to add it. As in file registration, the Form name used for file upload is frm.

 <script type="text/javascript">

 var existFileNum = document.frm.fileListCnt.value; // The values is contains in File List inquiry part.

 var maxFileNum = document.frm.posblAtchFileNumber.value;

 // In each business logic, have the maximum number of attachable files set in the relevant form value.
 var uploadableFileNum = maxFileNum - existFileNum; // Remove the previously registered number from the maximum number of registerable files.

 if(uploadableFileNum<0) {

 uploadableFileNum = 0;

 }

 if(uploadableFileNum != 0){

 fn_egov_check_file('Y');

 var multi_selector = new MultiSelector(document.getElementById('egovComFileList'), uploadableFileNum);

 multi_selector.addElement(document.getElementById('egovComFileUploader'));

 }else{

 fn_egov_check_file('N');

 }

 </script>

If you complete the script and HTML code and call the operation screen, you can view the following screen. When the files are registered to the maximum number, the Find File button is disabled. You can delete a file object by pressing Delete button.

Controller (File Upload – modified registration)

import egovframework.com.cmm.service.EgovFileMngService;

import egovframework.com.cmm.service.EgovFileMngUtil;

@Resource(name="EgovFileMngService")

private EgovFileMngService fileMngService;

@Resource(name="EgovFileMngUtil")

private EgovFileMngUtil fileUtil;

public String updateBoardArticle(

final MultipartHttpServletRequest multiRequest,

@ModelAttribute("searchVO") BoardVO boardVO,

@ModelAttribute("board") Board board,

SessionVO sessionVO,

ModelMap model,

SessionStatus status) throws Exception{

String _atchFileId = boardVO.getAtchFileId();/ Call the file ID of the function to be modified according to the relevant business function .

final Map<String, MultipartFile> files = multiRequest.getFileMap();

if(!files.isEmpty()){

if("".equals(_atchFileId)){

List<FileVO> _result = fileUtil.parseFileInf(files, "BBS_", 0, _atchFileId, "");

_atchFileId = fileMngService.insertFileInfs(_result); // No attached file ID.

board.setAtchFileId(_atchFileId); // Set up the attached file ID created according the relevant business rule.

}else{

FileVO fvo = new FileVO();

fvo.setAtchFileId(_atchFileId); // Set the current attach file ID to VO in order to ge the final fine serial number.

int _cnt = fileMngService.getMaxFileSN(fvo); // Get the final fine serial number belonging to the relevant attached file ID.

List<FileVO> _result = fileUtil.parseFileInf(files, "BBS_", _cnt, _atchFileId, "");

fileMngService.updateFileInfs(_result);

}

}

......

· The basic flow is the same with first creation, but if there is a previous attached file ID, get the final FILE_SN(file serial number) belonging to the relevant attached file ID and
· Provide the file serial number and attached file ID as arguments to parseFileInf method. After this, the file creation logic is the same as the first creation.
· For updateFileInfs method, which has a file already, ensure that there is no return value.

References
· Refer to the execution environment : File Upload/Download
