Customizing the nature of beans
Summary
Description
Lifecycle callbacks

The Spring Framework provides diverse callback interfaces which can change the bean behavior in the container.

Initialization callbacks

Implementing org.springframework.beans.factory.InitializingBean interface allows a bean to perform intialization work after all necessary properties on the bean have been set by the container. InitializingBean interface specifies exactly one method.

void afterPropertiesSet() throws Exception;

Generally, the use of the InitializingBean interface can be avoided and is actually discouraged since it unnecessarily couples the code to Spring. As an alternative, bean definitions provide support for a generic initialization method to be specified. In the case of XML-based configuration metadata, this is done using the 'init-method' attribute.
<bean id="exampleInitBean" class="examples.ExampleBean" init-method="init"/>

public class ExampleBean {

 public void init() {

 // do some initialization work

 }

}

...is exactly the same as...

<bean id="exampleInitBean" class="examples.AnotherExampleBean"/>

public class AnotherExampleBean implements InitializingBean {

 public void afterPropertiesSet() {

 // do some initialization work

 }

}

Destruction callbacks

Implementing the org.springframework.beans.factory.DisposableBean interface allows a bean to get a callback when the container containing it is destroyed.
void destroy() throws Exception;

Generally, the use of the DisposableBean callback interface can be avoided and is actually discouraged since it unnecessarily couples the code to Spring. As an alternative, bean definitions provide support for a generic destroy method to be specified. When using XML-based configuration metadata this is done via the 'destroy-method' attribute on the <bean/>.

<bean id="exampleInitBean" class="examples.ExampleBean" destroy-method="cleanup"/>

public class ExampleBean {

 public void cleanup() {

 // do some destruction work (like releasing pooled connections)

 }

}

...is exactly the same as...

<bean id="exampleInitBean" class="examples.AnotherExampleBean"/>

public class AnotherExampleBean implements DisposableBean {

 public void destroy() {

 // do some destruction work (like releasing pooled connections)

 }

}

Default initialization & destroy methods

The spring container can designate the initialization and destroy method.

public class DefaultBlogService implements BlogService {

 private BlogDao blogDao;

 public void setBlogDao(BlogDao blogDao) {

 this.blogDao = blogDao;

 }

 // this is (unsurprisingly) the initialization callback method

 public void init() {

 if (this.blogDao == null) {

 throw new IllegalStateException("The [blogDao] property must be set.");

 }

 }

}

<beans default-init-method="init">

 <bean id="blogService" class="com.foo.DefaultBlogService">

 <property name="blogDao" ref="blogDao" />

 </bean>

</beans>

Using the 'default-init-method' attribute of the <beans/> element, the default instantiation callback method can be specified. For destruction callback method, it can be specified using the 'default-destroy-method' attribute.

When the 'init-method', 'destroy-method' attribute is defined in <bean/> element, the default value is ignored.
Combining lifecycle mechanism
In Spring 2.5, there are three lifecycle mechanism methods: InitialzingBean and DisposableBean interface; custom init() and destroy() method; and @PostConstruct and @PreDestroy annotations

When combining different lifecycle mechanisms - for example, in a class hierarchy in which various lifecycle mechanisms are in use - developers should be aware of the order in which these mechanisms are applied. The following is the ordering for initialization methods.

1. Methods annotated with @PostConstruct
2. afterPropertiesSet() as defined by the InitializingBean callback interface

3. A custom configured init() method

Destroy methods are called in the same order:

1. Methods annotated with @PreDestroy
2. destroy() as defined by the DisposableBean callback interface

3. A custom configured destroy() method

Knowing who you are

BeanFactoryAware

A class which implements the org.springframework.beans.factory.BeanFactoryAware interface is provided with a reference to the BeanFactory that created it, when it is created by that BeanFactory.

public interface BeanFactoryAware {

 void setBeanFactory(BeanFactory beanFactory) throws BeansException;

}

This allows beans to manipulate the BeanFactory that created them programmatically, through the BeanFactory interface, or by casting the reference to a known subclass of this which exposes additional functionality. It should generally be avoided, since it couples the code to Spring and does not follow the Inversion of Control style, where collaborators are provided to beans as properties.
Alternatively, to use the org.springframework.beans.factory.config.ObjectFactoryCreatingFactoryBean.
The ObjectFactoryCreatingFactoryBean is a FactoryBean implementation that returns a reference to an object (factory) that can in turn be used to effect a bean lookup. The ObjectFactoryCreatingFactoryBean class does itself implement the BeanFactoryAware interface.
package x.y;

public class NewsFeed {

 private String news;

 public void setNews(String news) {

 this.news = news;

 }

 public String getNews() {

 return this.toString() + ": '" + news + "'";

 }

}

package x.y;

import org.springframework.beans.factory.ObjectFactory;

public class NewsFeedManager {

 private ObjectFactory factory;

 public void setFactory(ObjectFactory factory) {

 this.factory = factory;

 }

 public void printNews() {

 // here is where the lookup is performed; note that there is no

 // need to hard code the name of the bean that is being looked up...

 NewsFeed news = (NewsFeed) factory.getObject();

 System.out.println(news.getNews());

 }

}

Find below the XML configuration to wire together the above classes using the ObjectFactoryCreatingFactoryBean approach.

 <beans>

 <bean id="newsFeedManager" class="x.y.NewsFeedManager">

 <property name="factory">

 <bean

class="org.springframework.beans.factory.config.ObjectFactoryCreatingFactoryBean">

 <property name="targetBeanName">

 <idref local="newsFeed" />

 </property>

 </bean>

 </property>

 </bean>

 <bean id="newsFeed" class="x.y.NewsFeed" scope="prototype">

 <property name="news" value="... that's fit to print!" />

 </bean>

</beans>

BeanNameAware

If a bean implements the org.springframework.beans.factory.BeanNameAware interface and is deployed in a BeanFactory, the BeanFactory will call the bean through this interface to inform the bean of the name it was deployed under.
Reference
· Spring Framework - Reference Document / 3.5. Customizing the nature of a bean
