[bookmark: orm_서비스]ORM Service
[bookmark: _GoBack]Summary
As an OR Mapping service that resolves the inconsistency between Object Oriented Modeling and Relational Data Modeling, it presents JPA standard service, the Java standard as implement and uses Hibernate, known to have the highest performance in JPA implements. Features of service are as follows:
· Since it is not affected by specific DBMS, it can operate with change of setting information, without change on data access processing code, even if DBMS changes.
· Reduce the time of creating SQL and of creating the code to change to the object to deliver from the SQL execution result. However, SQL task is also possible if required.
· Adopt the Lazy Loading strategy of approaching to DBMS at the required time only, and pursue performance improvement of application by reducing the number of approach for DBMS through Cache utilization.
· Enable easy work by defining it as the minimum annotation in Entity Class without managing mapping in separate XML file.
· As the Entity Class is defined as a general class, it can be used as the persistence object while applying inheritance, diversity or encapsulation as they area.
· Support the JPA tool(Dali) that enables easy development and supports the implements in many vendors since it is Java standard.
· Learning is required for the developer who is familiar with the processing method using SQL. Obstacle exists due to this.
[bookmark: 설명]Description
[bookmark: 주요_개념]Main Concept
As shown in the figure to the left, [image: This is the caption]the required main components for DBMS based application are Entity, Persistence.xml and each of them performs the following roles.
· Entity: It deals with data that physically exists regardless of application execution. In general, if developing the application that uses DBMS data, it processes the data of application through SQL that matches specific DBMS in the business layer of application. In JPA-based application, however, interlock of DBMS and data of application is possible, focusing on Entity. Since mapping related items can be defined in Entity class based on annotation, relationship with table can be expressed without separate file.
· Persistence.xml: a file to create essentially if operating the application using JPA as a configuration file that can designate the property per implement or designate the declarative or target entity class for implement.
· JPA (Hibernate): Elements of Hibernates as JPA implement are Hibernate Core , Hibernate Annotations and Hibernate EntityManager and include implementation class such as Entity Manager required for JPA configuration.
· JPA Tool: JPA support tool includes Dali JPA Tools as a sub project in Eclipse Web Tools Platform. Using this tool, tasks requiring hard works such as creation of Entity class from the table created at DB can be automatically processed. See Dali Homepage for more details.
[bookmark: 시작_하기]Get Started
Explain what is required to start ORM service simply before detailed description on ORM service.
[bookmark: step1._사전_준비]Step1. Preparation
[bookmark: 필요_library]Required Library
Following are the Library list and description required for utilization of this service.
	Library
	Description
	Associated Library

	antlr-2.7.7.jar
	Parser library
	

	commons-collections-3.2.jar
	Library for collection processing
	

	commons-dbcp-1.2.2.jar
	DataSource library
	

	commons-logging-1.1.1.jar
	Library for Logging processing
	Referred in hibernate-annotations-3.4.0.GA.jar

	log4j-1.3alpha-8.jar
	Library for Logging processing
	

	slf4j-api-1.5.3.jar
	Library for Logging processing
	

	slf4j-log4j12-1.5.3.jar
	Library for Logging processing
	

	commons-pool-1.3.jar
	Library for pooling processing
	Referred in commons-dbcp-1.2.2.jar

	dom4j-1.6.1.jar
	XML parsing library
	Referred in hibernate-3.2.4.ga.jar

	ejb3-persistence-1.0.2.GA.jar
	JPA Interface class library
	

	hibernate-annotations-3.4.0.GA.jar
	Hibernate Annotation
	

	hibernate-entitymanager-3.4.0.GA.jar
	Hibernate Entity Manager implement library
	

	hibernate-commons-annotations-3.1.0.GA.jar
	Hibernate common annotation library
	Referred in hibernate-entitymanager-3.4.0.GA.jar

	hibernate-core-3.3.0.SP1.jar
	Hiberante Core library
	Referred in hibernate-entitymanager-3.4.0.GA.jar

	javassist-3.4.GA.jar
	Java bytecode operation library
	Referred in hibernate-entitymanager-3.4.0.GA.jar

	jta-1.1.jar
	JTA interface library
	Referred in hibernate-entitymanager-3.4.0.GA.jar

	hsqldb-1.8.0.10.jar
	HSQL JDBC driver
	

	mysql-connector-java-5.1.6.jar
	MYSQL JDBC driver
	

	ojdbc-14.jar
	ORACLE JDBC driver
	

	junit-4.4.jar
	Test support library
	

[bookmark: step2._entity_클래스_생성]Step2. Creating Entity Class
Create Entity class of simple forms. It consists of 4 Attributes, which consists of respective getter,setter methods.
[bookmark: entity_클래스]Entity Class
@Entity
public class Department implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id
 private String deptId;

 private String deptName;

 private Date createDate;

 private BigDecimal empCount;

 public String getDeptId() {
 return deptId;
 }

 public void setDeptId(String deptId) {
 this.deptId = deptId;
 }	
 ...
}
· @Entity: Defining that Department is Entity class
· @Id: Designating the Primary Key information
[bookmark: step3._persistence.xml_생성]Step3. Creating persistence.xml
This skill provides implement as a property file to perform JPA with Entity class defined above, and include class information, entity class information, DB access information, logging information and table auto-creation information.
<persistence-unit name="PersistUnit" transaction-type="RESOURCE_LOCAL">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <class>egovframework.Department</class>
 <exclude-unlisted-classes/>

 <properties>
 <property name="hibernate.connection.driver_class" value="org.hsqldb.jdbcDriver"/>
 <property name="hibernate.connection.url" value="jdbc:hsqldb:mem:testdb"/>
 <property name="hibernate.connection.username" value="sa"/>
 <property name="hibernate.dialect" value="org.hibernate.dialect.HSQLDialect"/>

 <property name="hibernate.connection.autocommit" value="false"/>
 <property name="hibernate.show_sql" value="true"/>
 <property name="hibernate.format_sql" value="true"/>
 <property name="hibernate.hbm2ddl.auto" value="create"/>
 </properties>

</persistence-unit>
· provider: designating the class of implements
· class: defining entity class name
· exclude-unlisted-classes: the class not designated above is excluded even if it is defined as entity
· hibernate.connection.*: being able to change according to respective environment with DB connection information
· hibernate.dialect: class for use of Hibernate per DBMS(defined separately per DBMS)
· hibernate.connection.autocommit: requiring declarative commit since whether to set auto commit is false.
· hibernate.show_sql: including SQL in the log
· hibernate.format_sql: printing SQL according to format
· hibernate.hbm2ddl.auto: creating DDL automatically, create the table for the class defined as Entity
[bookmark: step4._테스트_클래스_생성]Step4. Creating test class
We have form the task of entering, modifying, viewing and deleting processing in the form of JUNIT, using the department defined above.
@Test
public void testDepartment() throws Exception {

 String modifyName = "Marketing Department";
 String deptId = "DEPT-0001";
 Department department = makeDepartment(deptId);

 // Create Entity Manager
 emf = Persistence.createEntityManagerFactory("PersistUnit");
 em = emf.createEntityManager();	

 // Input
 em.getTransaction().begin();
 em.persist(department);
 em.getTransaction().commit();	

 em.getTransaction().begin();
 Department departmentAfterInsert = em.find(Department.class, deptId);
 // Confirm input
 assertEquals("Department Name Compare!",department.getDeptName(),departmentAfterInsert.getDeptName());

 // Modify
 departmentAfterInsert.setDeptName(modifyName);
 em.merge(departmentAfterInsert);
 em.getTransaction().commit();	

 em.getTransaction().begin();
 Department departmentAfterUpdate = em.find(Department.class, deptId);
 // Confirm Modification
 assertEquals("Department Modify Name Compare!",modifyName,departmentAfterUpdate.getDeptName());

 // Delete
 em.remove(departmentAfterUpdate);
 em.getTransaction().commit();	

 // Confirm Deletion
 Department departmentAfterDelete = em.find(Department.class, deptId);
 assertNull("Department is Deleted!",departmentAfterDelete);

 em.close();

}
· Persistence.createEntityManagerFactory: Create Entity Manager Factory
· emf.createEntityManager: Create Entity Manager
· em.getTransaction().begin(): Start Transaction
· em.getTransaction().commit(): Commit
· em.persist: Insert
· em.find: SELECT
· em.merge: UPDATE
· em.remove: DELETE
· assertEquals: Compare whether the values are same(JUnit method)
· assertNull: check whether it is NULL or not(JUnit method)
[bookmark: step5._실_행]Step5. Execute
1. Download the ormsimpleguide.zip file and unzip.
2. Select the folder unzipped at Eclipse and import the project.
3. Check whether there is META-INF/persistence.xml, log4j.xml in Department.java, DepartmentTest.java, resources folder in the src folder of project.
4. Check whether there is library file in lib.
5. Select DepartmentTest.java, right-click to run Run As > JUnit Test.
6. Check whether it is normally performed in JUnit result window.
※ In case of ORACLE or MySQL, if you set and execute in reference to annotation of persistence.xml, you can check whether it works properly.
[bookmark: 상세_설명]Detailed Description
1. Entities
2. Entity Operation
3. Association Mapping
4. Query Language
5. Native SQL
6. Concurrency
7. Cache Handling
8. Fetch Strategy
9. Spring Integration
10. JPA Configuration
[bookmark: 참고자료]Reference

image1.jpeg
Conceptual Architecture

Application

JPA (Hibernate)

persistence.xml

