Declarative Transaction Management
Summary
You can manage transactions declaratively instead of processing them directly in the code. Transaction management using Annotation and Transaction management using XML definition are supported.
Description
Annotation Transaction Management

You can use Annotation configuration to manage Transaction. The following shows how to configure and use.
Configuration

<tx:annotation-driven transaction-manager="transactionManager" />

Add above <tx:annotation-driven..> to the configuraiotn XML. For transactionManager, refer to TransactionManager configuraiton

Sample Source

@Transactional

public void removeRole(Role role) throws Exception {

 this.roleDAO.removeRole(role);

}

As in the above, you can mange transactions by adding @Transactional to the method. You can define properties to @Transactional as in the following.
	Property
	Description
	Example

	isolation
	Element that defines Transaction’s isolation Level. If not defined separately. DB’s Isolation Level is used.
	@Transactional(isolation=Isolation.DEFAULT)

	noRollbackFor
	Do not carry out rollback for defined exceptions.
	@Transactional(noRollbackFor=NoRoleBackTx.class)

	noRollbackForClassName
	Define the exception for which you should not carry out rollback by using strings, not class object.
	@Transactional(noRollbackForClassName=“NoRoleBackTx”)

	propagation
	Element for defining the propagation types of transaction
	@Transactional(propagation=Propagation.REQUIRED)

	readOnly
	Handle the transaction as read-only mode (Default = false)
	@Transactional(readOnly = true)

	rollbackFor
	Carry out rollback for defined exceptions
	@Transactional(rollbackFor=RoleBackTx.class)

	rollbackForClassName
	Define exceptions for which you have to carry out rollback by using strings, not class object.
	@Transactional(rollbackForClassName=“RoleBackTx”)

	timeout
	If method execution is not completed within the specified time, carry out rollback. If it is -1, it means no timeout (Default = -1)
	@Transactional(timeout=10)

Configurationally Transaction Management

You can use XML definition configuration to manage transactions. The following shows how to configure and use.
Configuration

<aop:config>

 <aop:pointcut id="requiredTx" expression="execution(* egovframework.sample..impl.*Impl.*(..))"/>

 <aop:advisor advice-ref="txAdvice" pointcut-ref="requiredTx" />

</aop:config>

<tx:advice id="txAdvice" transaction-manager="transactionManager">

 <tx:attributes>

 <tx:method name="find*" read-only="true"/>

 <tx:method name="createNoRBRole" no-rollback-for="NoRoleBackTx"/>

 <tx:method name="createRBRole" rollback-for="RoleBackTx"/>

 <tx:method name="create*"/>

 </tx:attributes>

</tx:advice>

In the above configuration, the method which is run by aop:pointcut is specified and tx:advice is used to define rule for each. By defining so, you can manage transactions without describing about transactions separately in the program. As shown in above sample XML, for the transaction management, you can add the following properties to <tx:method> which is a sub tag of <tx:advice>.
	Property
	Description
	Example

	name
	Method name or wild card
	name=“find*”

	isolation
	Element that defines isolation Level of transaction. If not defined separately, DB’s Isolation Level is used.
	isolation=“DEFAULT”

	no-rollback-for
	Do not carry out rollback for defined exceptions.
	no-rollback-for=“NoRoleBackTx”

	propagation
	Element for defining the propagation types of transaction
	propagation=“REQUIRED”

	read-only
	Handle the transaction as read-only mode (Default = false)
	read-only=“true”

	rollback-for
	Carry out rollback for defined exceptions
	rollback-for=“RoleBackTx”

	timeout
	If method execution is not completed within the specified time, carry out rollback. If it is -1, it means no timeout (Default = -1)
	timeout=“10”

For values for related properties, refer to the schema.

Propagation Behavior, Isolation Level

In the above two types of transaction management, Propagation and Isolation Level are used.
Propagation Behavior

This is used to configure the propagation rule of transaction.

	Property
	Description

	PROPAGATION_MADATORY
	The method should be executed within the transaction, if not, an exception occurs

	PROPAGATION_NESTED
	If there is a transaction, execute the method in the format of the nested transaction within the existing transaction. Here you can carry out commit or rollback for the nested transaction. If there is no transaction, this acts as a PROPAGATION_REQUIRED property. When executed as a nested transaction, it is not visible in the existing transaction until changes are committed.

	PROPAGATION_NEVER
	Contrary to Manatory, this should be executed without transaction. If there is transaction, an exception occurs.

	PROPAGATION_NOT_SUPPORTED
	Execute the method without a transaction. If there is an existing transaction, it should be held back until this method that calls this transaction ends.

	PROPAGATION_REQUIRED
	If there is any existing transaction, execute within that transaction. If not, create a new transaction.

	PROPAGATION_REQUIRED_NEW
	The called method is executed with its own transaction and the existing transactions are held back.

	PROPAGATION_SUPPORTS
	This doesn’t need a new transaction, but if there is an existing transaction, execute the method within the transaction.

Isolation Level

This is the level that inconsistent data is allow in a transaction. It also means the level that multiple transactions are protected from interruptions of other transactions. For details, refer to here.

	Property
	Description

	ISOLATION_DEFAULT
	Isolation level for individual PlatformTransactionManager

	ISOLATION_READ_COMMITTED
	The method uses this isolation level cannot read data that is not committed. Write lock cannot get data that has been changed by other transactions. This is the isolation level that is supported by most database by default.

	ISOLATION_READ_UNCOMMITTED
	This is the lowest transaction level. The method using this isolation level can read data that is not committed, cannot know whether new records are added.

	ISOLATION_REPEATABLE_READ
	This is a little stricter that ISOLATION_READ_COMMITED. This means that if other transactions input new data, the new data can be retrieved.

	ISOLATION_SERIALIZABLE
	This is the highest isolation level. All transactions are very late as you have to wait until every line should be executed. By obtaining an exclusive write lock on the data, the method using this isolation level prevents other transaction from querying, modification and inputting data until the transaction ends.

References

