Chapter 1. Introduction
1.1. Summary
Spring Web Flow(SWF) is a component of Spring framework web stack focused on the definition and execution of page flow within a web application.

The system allows you to capture a logical flow of your web application as a self-contained module that can be reused in different locations. Such a flow guides a single user through the implementation of a business process, and represents a single user conversation. Flows often execute across HTTP requests, have state, exhibit transactional characteristics, and may be dynamic and/or long-running in nature.
. Spring Web Flow exists at a higher level of abstraction, integrating as a self-contained page flow engine within base frameworks such as Struts, Spring MVC, Portlet MVC, and JSF. SWF provides you the capability to capture your application's page flow explicitly in a declarative, portable, and manageable fashion. SWF is a powerful controller framework based on a finite-state machine, fully addressing the "C" in MVC.
1.2. Packaging Overview
Spring Web Flow has been architected as a self-contained page flow engine with few required dependencies on third-party APIs. All dependencies are carefully managed.
At a minimum, to use Spring Web Flow you need:

· spring-webflow (the framework)

· spring-core (miscellaneous utility classes used internally by the framework))

· spring-binding (the Spring data binding framework, used internally)

· commons-logging (a simple logging facade, used internally)

Most users will embed SWF as a component within a larger web application development framework, as SWF is a focused controller technology that expects a calling system to care for request mapping and response rendering. In this case, those users will depend on a thin integration piece for their environment. For example, those executing flows within a Servlet environment might use the Spring MVC integration to care for dispatching requests to SWF and rendering responses for SWF view selections.
Spring Web Flow, like Spring, is a layered framework, packaged in a manner that allows teams to use the parts they need and nothing else. For example, one team might use Spring Web Flow in a Servlet environment with Spring MVC and thus require the Spring MVC integration. Another team might use SWF in a Portlet environment, and thus require the Portlet MVC integration. Another team might mix and match. A major benefit of SWF is that it allows you to define reusable, self-contained controller modules that can execute in any environment.
1.3. High Level Architecture
A high level diagram of Spring Web Flow's layered architecture is shown below.

[image: image1.png]
Spring Web Flow

1.4. Package Structure
This section provides an overview of the logical package structure of the SWF codebase. The dependencies for each package are clearly noted.

1.4.1. org.springframework.webflow

webflow package contains the central foundational abstractions of the framework. These abstractions consist of definition artifacts such as Flow, State, and Action that define the core "domain language" for expressing flows.

· Dependencies: spring-core, spring-binding, commons-logging

1.4.2. org.springframework.webflow.action

The action package contains implementations of the core "Action" abstraction for executing arbitrary command logic within a Flow
· Dependencies: webflow, spring-beans (optional), spring-context (optional)

1.4.3. org.springframework.webflow.builder

The builder package contains abstractions used at configuration-time for building and assembling Flows, in Java or from externalized resources such as XML files.

· Dependencies: webflow, webflow.support

1.4.4. org.springframework.webflow.execution

The execution package contains runtime abstractions for executing Flows and managing flow executions. This is where the implementation of the Spring Web Flow's finite-state machine resides. This is also where the repository subsystem resides, for storing active flow executions beyond a single request into the server. This subsystem forms the basis for Spring Web Flow's continuation server
· Dependencies: webflow, webflow.util, commons-codec (optional)

1.4.5. org.springframework.webflow.executor

The executor package is the highest-level package in the framework. It contains implementations of "flow executors" that drive the execution of flows. This is where the facade for external systems that call into the Spring Web Flow system resides. This is also where integration layers for Spring MVC (Servlet and Portlet), Struts, and Java Server Faces (JSF) reside.
· Dependencies: webflow.execution, spring-webmvc (optional), spring-portlet (optional), Struts (optional), Java Server Faces (optional).

1.4.6. org.springframework.webflow.registry

The registry package contains the subsystem for managing registries of flow definitions that are eligible for execution.

· Dependencies: webflow, webflow.builder, webflow.execution, spring-beans (optional)

1.4.7. org.springframework.webflow.support

The support package contains general-purpose implementations of the core definitional artifacts. These implementations are mainly used internally by the other packages of the framework but are also usable directly by developers

· Dependencies: webflow

1.4.8. org.springframework.webflow.test

The test package contains support for testing Flow Executions out-of-container, as well as unit testing artifacts such as Actions in isolation.
· Dependencies: webflow, webflow.execution, junit

A package dependency noted as (optional) means that the dependency is needed to compile the package but is optionally needed at runtime (depending on your use of the package). For example, use of Spring Web Flow in a Servlet environment entails use of the context.servlet package and requires the Servlet API to be in the classpath, but not the Portlet API.
For the exact list of dependencies, as well as supported product usage configurations, see the SWF ivy dependency manager descriptor located within the SWF distribution at spring-webflow/ivy.xml
1.5. Support
Spring Web Flow 1.0 is supported on Spring 1.2.7 or later.
The community support forum is located at http://forum.springframework.org.
Chapter 2. Flow Definition
2.1. Introduction
Spring Web Flow allows developers to build reusable, self-contained controller modules called flows. A flow defines a user dialog that responds to user events to drive the execution of application code to complete a business goal.
Flows are defined declaratively using a rich domain-specific language (DSL) tailored to the problem domain of page flow. Currently, XML and Java-based forms of this language are provided.
This chapter documents Spring Web Flow's core flow definition language. You will learn the core domain constructs of the system and how those constructs are representable in an externalized XML form.

2.2. Flow

A flow is a instance of org.springframework.webflow.definition.Flow. This is the central domain artifact representing the definition of a dialog.
A flow consists of a set of one or more states, where each state defines a step in the flow that when entered executes a behavior. What behavior is executed is a function of the state's type and configuration. The outcome of a state's execution, called an event, is used by the flow to drive a state transition.
Exactly one of a flow's states is the startState that defines the starting point of the flow. Optionally, a flow can have one or more end states defining the ending points of the flow.
The properties of org.springframework.webflow.Flow are summarized below.

Table 2.1. Flow Property
	Property name
	Description
	Cardinality
	Default value

	id
	The identifier of the flow definition, typically unique to all other flows of the application.
	1
	

	properties
	Additional custom attributes about the flow.
	0..*
	None

	states
	The steps of the flow.
	1..*
	

	startState
	The starting point of the flow.
	1
	

	startActions
	The list of actions to execute each time an execution of the flow is started.
	0..*
	Empty

	globalTransitions
	The set of transitions shared by all states of the flow.
	0..*
	Empty

	endActions
	The list of actions to execute each time an execution of the flow ends.
	0..*
	Empty

	exceptionHandlers
	An ordered set of handlers to be applied when an exception is thrown within a state of the flow.
	0..*
	Empty

	inlineFlows
	A set of inner flows that will be called as subflows; these flows are locally scoped to the outer flow.
	0..*
	Empty

Below is a high level example of how these properties can be configured in XML form or directly in Java code.

2.2.1. XML Based Flow Template
 <flow start-state="startingPoint">

 <property .../>

 <start-actions>

 ...

 </start-actions>

 <-- your state definitions go here -->

 <global-transitions>

 ...

 </global-transitions>

 <end-actions>

 ...

 </end-actions>

 <exception-handler .../>

 <inline-flow>

 ...

 </inline-flow>

 </flow>

2.2.2. Java flow API example
 Flow flow = new Flow("id");

 flow.setProperty(..., ...);

 flow.addState(...);

 flow.setStartState("startingPoint");

 flow.addStartAction(...);

 flow.addGlobalTransition(...);

 flow.addEndAction(...);

 flow.addExceptionHandler(...);

 flow.addInlineFlow(...);

2.3. State

A State defines the behavior for a step of a Flow. The base implementation class for all Flow state types is org.springframework.webflow.State. This abstract class defines common properties applicable to all state types, which include:
Table 2.2. State properties
	Property name
	Description
	Cardinality
	Default value

	id
	The id of the state, unique to its containing flow .
	1
	

	flow
	The owning flow.
	1
	

	properties
	Additional custom properties about the state
	0..*
	None

	entryActions
	The list of actions to execute each time the state is entered
	0..*
	Empty

	exceptionHandlers
	An ordered set of handlers to be invoked when an exception is thrown within the state
	0..*
	Empty

2.4. Transitionable State
A central subclass of State is org.springframework.webflow.TransitionableState. This abstract class defines common properties applicable to all state types that execute transitions to other states in response to events. These properties include:
Table 2.3. TransitionableState properties
	Property name
	Description
	Cardinality
	Default value

	transitions
	The eligible paths out of this state
	1..*
	

	exitActions
	The list of actions to execute each time this state is exited.
	0..*
	Empty

Below is a mock flow definition snippet showing how properties may be configured for a TransitionableState in XML and in Java code:
2.4.1. XML-based state template
 <flow start-state="stateId">

 <some-state id="stateId">

 <property .../>

 <entry-actions>

 ...

 </entry-actions>

 <transition .../>

 <exit-actions>

 ...

 </exit-actions>

 <exception-handler ../>

 </some-state>

 </flow>

2.4.2. Java state API Example
 Flow flow = new Flow("id");

 TransitionableState state = new SomeConcreteStateType(flow, "stateId");

 state.setProperty(..., ...);

 state.addEntryAction(...);

 state.addTransition(...);

 state.addExitAction(...);

2.5. Transition

A transition takes a flow from one state to another, defining a path through the flow.

Recall that all TransitionableStates have a set of one or more transitions, each defining a path to another state in the flow (or a recursive path back to the same state). When a transitionable state is entered, it executes a behavior. For example, a transitionable state called "Display Form" may display a form to the user and wait for user input. The outcome of the state's execution, called an event, is used to drive execution of one of the state's transitions. For example, the user may press the form submit button which signals a submit event that matches the transition to the "Process Submit" state.

This event-driven transition execution process is shown graphically below:

[image: image2.jpg]
Transition execution
The transition is defined by an instance of org.springframework.webflow.Transition. Its properties are summarized below:

Table 2.4. Transition Property
	Property name
	Description
	Cardinality
	Default value

	properties
	Additional properties describing the transition.
	0..*
	None

	matchingCriteria
	The strategy that determines if the transition matches on an event occurrence
	1
	Always matches

	executionCriteria
	The strategy that determines if the transition, once matched, is allowed to execute
	1
	Always allowed

	targetStateResolver
	The strategy that resolves the target state of the transition
	1
	

Below is a high-level example of how a Transition can be configured in XML form or directly in Java code.

2.5.1. Transition XML Template
 <transition on="event" to="targetState">

 <property .../>

 <action ../>

 </transition>

2.5.2. Transition Java API Example
 Transition transition = new Transition(new StaticTargetStateResolver("targetState"));

 transition.setProperty(..., ...);

 transition.setMatchingCriteria(new EventIdTransitionCriteria("event"));

 transition.setExecutionCriteria(...);

2.5.3. Action transition execution criteria
In the XML transition template above, note the support for the action element within the transition element.

A transition may be configured with one or more actions that execute before the transition itself executes. If one or more of these actions do not complete successfully, the transition will not be allowed. This execution criteria makes it possible to execute arbitrary logic after a transition is matched but before it is executed. This is useful when you want to execute event post-processing logic. A good example is executing form data binding and validation behavior after a form submit event.
2.5.4. Global transitions
As outlined, one or more transitions are added to all TransitionableState types, attached at the state-level. Optionally, transitions may also be added at the flow-level where they are shared by all states. These shared transitions are called global transitions.
When an event is signaled in a transitionable state, the state will first try and match one of its own transitions. If there is no match at the state level, the set of global transitions will be tested. If there still is no match, a NoMatchingTransitionException will be thrown.

Global transitions are useful in situations where many states of the flow share the same transitional criteria. For example, consider a navigation menu that displays alongside each view of a flow. Logic to process navigation menu events is needed by all view states. This is the problem global transitions are designed to solve.

2.5.4.1. Global transitions - XML example
The following example shows transitions defined at the state level, as well as global transitions defined at the flow level.

 <flow start-state="state1">

 <some-state id="state1">

 <transition on="localEvent1" to="state2"/>

 </some-state>

 <some-state id="state2">

 <transition on="localEvent1" to="state1"/>

 </some-state>

 <global-transitions>

 <transition on="globalEvent1" to="state1"/>

 <transition on="globalEvent2" to="state2"/>

 </global-transitions>

 </flow>

In this example, state1 defines one transition and also inherits the two others defined within the global-transitions element. Any other states defined within this flow would also inherit those global transitions.

This example is shown graphically below:

[image: image3.png]
Global transitions
2.6. Concrete state types
Spring Web Flow has five (5) built-in concrete state types, all contained within the org.springframework.webflow.engine package. These states execute common controller behaviors including:

1. allowing the user to participate in a flow(ViewState)

2. executing business application code(ActionState)

3. making a flow routing decision (DecisionState)

4. spawning another flow as a subflow(SubflowState)

5. terminating a flow(EndState)

Each of these state types, with the exception of EndState, is transitionable. This hierarchy is illustrated below:

[image: image4.jpg]
State class diagram
2.6.1. ViewState

When entered, a view state allows the user (or other external client) to participate in a flow. This participation process goes as follows:
1. The entered view state makes a org.springframework.webflow.execution.ViewSelection that represents a logical response to issue to the caller.

2. The flow execution 'pauses' in this state, and control is returned to the calling system.

3. The calling system uses the returned ViewSelection to present a suitable interface (or other response) to the user.

4. After some 'think time', the user submits an input event to resume the flow execution from the 'paused' point.

Spring Web Flow gives you full control over the view selection process and, on resume, how a view state responds to a user input event. Spring Web Flow is currently not concerned with rendering the actual response; as a controller, a flow makes a logical view selection when user input is required, where a view selection serves as a response instruction. It is up to the calling system to interpret that instruction to issue a response suitable for the environment in which the flow is executing.
The properties of a org.springframework.webflow.engine.ViewState are summarized below:

Table 2.5. ViewState properties
	Property name
	Description
	Cardinality
	Default value

	viewSelector
	The strategy that makes the view selection when this state is entered.
	0..1
	Null

The properties of org.springframework.webflow.ViewSelection are summarized below.

Table 2.6. ViewSelection Properties
	Property name
	Description
	Cardinality
	Default value

	viewName
	The logical identifier of a response that should be issued.
	1
	

	modelMap
	Data to be issued in a response
	0..*
	Empty

	redirect
	Whether browser redirect is triggered
	1
	False

2.6.1.1. ViewSelector

The creational strategy responsible for making a ViewSelection when an ViewState is entered is org.springframework.webflow.engine.ViewSelector. This provides a plugin-point for customizing how the viewName is calculated, how the modelMap is prepared, and whether a redirect should be issued.
Two ViewSelector implementations are provided with Spring Web Flow:

Table 2.7. ViewSelector implementations
	Implementation
	Description

	SimpleViewSelector
	Returns a ViewSelection with a static viewName and modelMap containing the union of the attributes in flow scope and request scope. Supports setting a requestConversationRedirect flag that triggers a browser redirect to the selected view. The default implementation.

	RedirectViewSelector
	Returns a ViewSelection that triggers a browser redirect to an arbitrary external URL. The viewName is the relative URL to redirect to. Attributes added to the modelMap become URL query parameters. Mainly used by end states to redirect after flow completion.

The class diagram below shows the ViewState and the associated types used to carry out the view selection process:

[image: image5.jpg]
ViewState class diagram

2.6.1.2. ViewState XML - simple view selection

The following example shows a view-state definition in XML that makes a simple view selection when entered, selecting the searchForm view for display and, on resume, responding to two possible user input events (submit and cancel) in different ways:

 <flow start-state="displaySearchForm">

 <view-state id="displaySearchForm" view="searchForm">

 <transition on="submit" to="processFormSubmission"/>

 <transition on="cancel" to="processCancellation"/>

 </view-state>

 ...

 </flow>

2.6.1.3. ViewState API - simple view selection

The following example shows the equivalent view state definition using the FlowBuilder API:

 public class SearchFlowBuilder extends AbstractFlowBuilder {

public void buildStates() {

 addViewState("displaySearchForm", "searchForm",

 new Transition[] {

 transition(on("submit"), to("processFormSubmission")),

 transition(on("cancel"), to("processFormCancellation"))

 }

);

 ...

 }

 }

2.6.1.4. ViewState XML - conversation redirect

The following example illustrates a view-state definition in XML that makes a simple view selection when entered, redirecting to the yourList view for display.

 <flow start-state="displayList">

 <view-state id="displayList" view="yourList" redirect="true">

 <transition on="add" to="addListItem"/>

 </view-state>

 ...

 </flow>

This is example is called a conversation redirect because the ViewSelection made is cached between request as the "current view selection" for the active conversation. The actual redirect sent is a conversation URL that renders the current view selection on a request into the server.

2.6.1.5. ViewState API - conversation redirect

The following example shows the equivalent view state definition using the FlowBuilder API:

 public class SearchFlowBuilder extends AbstractFlowBuilder {

public void buildStates() {

 addViewState("displayList", new SimpleViewSelector("yourView", true),

 transition(on("add"), to("addListItem"))

);

 ...

 }

 }

2.6.1.6. ViewState XML - form state behavior

The following example illustrates a view-state definition in XML that encapsulates typical "form state" behavior.

Consider the requirements of typical input forms. Most forms require pre-render or setup logic to execute before the form is displayed. For example, such logic might load the backing form object from the database, install formatters for formatting form field values, and pull in supporting form data needed to populate drop-down menus.

In addition, most forms require post-back or submission logic to execute when the form is submitted. This logic typically involves binding form input to the backing form object and performing type conversion and data validation.

This "form state" behavior of form setup, display, and post-back is handled elegantly in Spring Web Flow by the capabilities of the view-state construct. See below:

 <flow start-state="displayForm">

 <view-state id="displayForm" view="form">

 <entry-actions>

 <action bean="formAction" method="setupForm"/>

 </entry-actions>

 <transition on="submit" to="saveForm">

 <action bean="formAction" method="bindAndValidate"/>

 </transition>

 </view-state>

 ...

 </flow>

This reads "when the displayForm state is entered, execute the setupForm method on the formAction and render the form view. On submit transition to the saveForm state if the bindAndValidate method on the formAction executes successfully."

2.6.2. ActionState

When entered, an action state executes business application code, then responds to the result of that execution by deciding what state in the flow to enter next. Specifically:

1. The entered action state executes an ordered list of one or more org.springframework.webflow.Action instances. This Action interface is the central abstraction that encapsulates the execution of a logical unit of application code.

2. The state determines if the outcome of the first action's execution matches a transition. If there is a match, the transition is executed. If there is no match, the next action in the list is executed. This process continues until a transition is matched or the list of actions is exhausted.

Spring Web Flow gives you full control over implementing your own actions and configuring when they should be invoked within the lifecycle of a flow. The system can also automatically adapt methods on your existing application objects (POJOs) to the Action interface in a non-invasive manner.

The properties of a org.springframework.webflow.ActionState are summarized below:

Table 2.8. ActionState properties
	Property name
	Description
	Cardinality
	Default value

	actions
	The ordered list of actions to execute when the state is entered.
	1..*
	

2.6.2.1. Action execution points

As outlined, the ActionState is the central state type for invoking one or more actions and responding to their result to drive a state transition. There are also other points within the lifecycle of a flow where a chain of actions can be executed. At all of these points the only requirement is that these actions implement the central org.springframework.webflow.Action interface.

Table 2.9. Points in a Flow where an Action can be executed
	Point
	Description

	on flow start
	Each time an execution of a flow starts.

	on state entry
	Each time a state enters.

	on transition
	Each time a state transition is matched but before it is executed.

	on state exit
	Each time a transitionable state exits.

	on flow end
	Each time an execution of a flow terminates.

2.6.2.2. Action properties

An Action may be annotated with properties by wrapping the Action in a decorator, an instance of org.springframework.webflow.AnnotatedAction. These properties may provide descriptive characteristics, or may be used to affect the action's execution in a specific usage context.

Support for setting several common properties are provided for convenience. These include:

Table 2.10. Common Action properties
	Property name
	Description

	caption
	A short description about the action, suitable for display as a tooltip.

	description
	A long description about the action, suitable for display in a text box.

	name
	The name of the action, used to qualify the action's result event. For example, an Action named placeOrder that returns success would be assigned a result event identified by placeOrder.success. This allows you to distinguish logical execution outcomes by action, useful when invoking multiple actions as part of a chain.

	method
	The name of the target method on the Action instance to invoke to carry out execution. This facilitates multiple action methods per Action instance.

	resultName
	If the target method is an arbitrary public method that returns a value, this is the name of the attribute the value should be indexed under.

	resultScope
	If the resultName property is specified, this is the scope the result attribute should be indexed in. For example, "request" or "flow" scope.

The class diagram below shows the ActionState and the associated types used to carry out the action execution process:

[image: image6.jpg]
ActionState class diagram

2.6.2.3. ActionState XML - simple action execution

The following example constructs an ActionState definition from XML that executes a single action when entered and then responds to its result:

 <flow start-state="displaySearchCriteria">

 ...

 <action-state id="executeSearch">

 <action bean="searchAction"/>

 <transition on="success" to="displayResults"/>

 </action-state>

 ...

 </flow>

This state definition reads "when the executeSearch state is entered, execute the searchAction. On successful execution, transition to the displayResults state."

The association between the searchAction id and an Action implementation is made by the XmlFlowBuilder at Flow configuration time using a service registry, typically a Spring BeanFactory. For example:

 <beans>

 <bean id="searchAction" class="example.webflow.SearchAction"/>

 </beans>

... associates the searchAction with a single instance of example.webflow.SearchAction.

A simple SearchAction implementation might look like this:

 public class SearchAction implements Action {

 private SearchService searchService;

 public SearchAction(SearchService searchService) {

 this.searchService = searchService;

 }

 public Event execute(RequestContext context) {

 // lookup the search criteria in "flow scope"

 SearchCriteria criteria =

 (SearchCriteria)context.getFlowScope().getAttribute("criteria");

 // execute the search

 Collection results = searchService.executeSearch(criteria);

 // set the results in "request scope"

 context.getRequestScope().setAttribute("results", results);

 // return "success"

 return new Event(this, "success");

 }

 }

2.6.2.4. ActionState API - simple action execution

The following example constructs the equivalent action state definition using the FlowBuilder API:

 public class SearchFlowBuilder extends AbstractFlowBuilder {

public void buildStates() {

 ...

 addActionState("executeSearch", action("searchAction"),

 transition(on("success"), to("displayResults")));

 ...

 }

 }

2.6.2.5. ActionState XML - action method execution

The next example constructs an ActionState definition from XML that executes a single action method on a org.springframework.webflow.MultiAction and then responds to its result:

 <flow start-state="displaySearchCriteria">

 ...

 <action-state id="executeSearch">

 <action bean="searchFlowAction" method="executeSearch"/>

 <transition on="success" to="displayResults"/>

 </action-state>

 ...

 </flow>

This state definition reads "when the executeSearch state is entered, execute the executeSearch method on the searchFlowAction. On successful execution, transition to the displayResults state."

A SearchFlowAction implementation containing multiple action methods might look like this:

 public class SearchFlowAction extends MultiAction {

 private SearchService searchService;

 public SearchAction(SearchService searchService) {

 this.searchService = searchService;

 }

 public Event executeSearch(RequestContext context) {

 // lookup the search criteria in "flow scope"

 SearchCriteria criteria =

 (SearchCriteria)context.getFlowScope().getAttribute("criteria");

 // execute the search

 Collection results = searchService.executeSearch(criteria);

 // set the results in "request scope"

 context.getRequestScope().setAttribute("results", results);

 // return "success"

 return success();

 }

 public Event someOtherRelatedActionMethod(RequestContext context) {

 return success();

 }

 public Event yetAnotherRelatedActionMethod(RequestContext context) {

 return success();

 }

 }

As you can see, this allows you to define one to many action methods per Action class. With this approach, there are two requirements:

1. Your Action class must extend from org.springframework.webflow.MultiAction, or another class that extends from MultiAction. The multi action cares for the action method dispatch that is based on the value of the method property.

2. Each action method must conform to the signature illustrated above: public Event ${method}(RequestContext) { ... }

2.6.2.6. ActionState API - action method execution

The following example constructs the equivalent action state definition using the FlowBuilder API:

 public class SearchFlowBuilder extends AbstractFlowBuilder {

public void buildStates() {

 ...

 addActionState("executeSearch", method("executeSearch", action("searchAction")),

 transition(on("success"), to("displayResults")));

 ...

 }

 }

2.6.2.7. ActionState XML - POJO action method execution

The next example constructs a ActionState definition from XML that executes a single method on your Plain Old Java Object (POJO) and then responds to the result:

 <flow start-state="displaySearchCriteria">

 ...

 <action-state id="executeSearch">

 <action bean="searchService" method="executeSearch(${flowScope.criteria})"

 resultName="results"/>

 <transition on="success" to="displayResults"/>

 </action-state>

 ...

 </flow>

This state definition reads "when the executeSearch state is entered, execute the executeSearch method on the searchService passing it the object indexed by name criteria in flowScope. On successful execution, expose the method return value in request scope under the name results and transition to the displayResults state."

In this example, the referenced bean searchService would be your application object, typically a transactional business service. Such a service implementation must have defined the the Collection executeSearch(SearchCriteria) method, typically by implementing a service interface:

 public interface SearchService {

 public Collection executeSearch(SearchCriteria criteria);

 }

With this approach there are no requirements on the signature of the methods that carry out action execution, nor is there any requirement to extend from a Web Flow specific base class. Basically, you are not required to write a custom Action implementation at all--you simply instruct Spring Web Flow to call your business methods directly. The need for custom "glue code" to bind your web-tier to your middle-tier is eliminated.

Spring Web Flow achieves this by automatically adapting the method on your existing application object to the Action interface and caring for exposing any return value in the correct scope.

This is adaption process is shown graphically below:

[image: image7.png]
Bean->Action adapter

2.6.2.8. ActionState API - POJO action method execution

The following example constructs the equivalent action state definition using the FlowBuilder API:

 public class SearchFlowBuilder extends AbstractFlowBuilder {

public void buildStates() {

 ...

 addActionState("executeSearch", searchAction(),

 transition(on("success"), to("displayResults")));

 ...

 }

 protected Action searchAction() {

 AnnotatedAction searchAction =

 method("executeSearch(${flowScope.criteria})", action("searchAction"));

 searchAction.setResultName("results");

 return searchAction;

 }

 }

2.6.3. DecisionState

When entered, a decision state makes a flow routing decision. This process consists of:

1. Evaluating one or more boolean expressions against the executing flow to decide what state to transition to next.

2. Alternatively, executing a single decision action and evaluating its return event to decide what state to transition to next. This action should be idempotent; that is, it should not have side effects. Convenient support for evaluating return values of methods invoked on your application objects (POJOs) is provided.

The properties of a org.springframework.webflow.DecisionState are summarized below:

Table 2.11. DecisionState properties
	Property name
	Description
	Cardinality
	Default value

	action
	The idempotent action to execute when the state is entered. The action result event is used as the basis for the decision.
	0..1
	Null

2.6.3.1. DecisionState XML - expression evaluation

The following example constructs an DecisionState from XML that evalutes a boolean expression to determine what transition to execute:

 <flow start-state="shippingRequired">

 <decision-state id="shippingRequired">

 <if test="${flowScope.order.needsShipping}" then="enterShippingDetails" else="placeOrder"/>

 </decision-state>

 ...

 </flow>

This state definition reads "if the needsShipping property on the order object in flow scope is true, transition to the enterShippingDetails state, otherwise transition to the placeOrder state."

Caution: flow definitions should not be vehicles for business logic. In this case the decision made was controller logic, reasoning on a pre-calculated value to decide what step of the flow to transition to next. That is the kind of logic that should be in a flow definition. In contrast, having the state itself embed the business rule defining how shipping status is calculated is a misuse. Instead, push such a calculation into application code where it belongs and instruct the flow to invoke that code using an action.

2.6.3.2. DecisionState XML - decision action

The following example constructs a DecisionState from XML that executes a action that forms the basis for the transition decision:

 <flow start-state="shippingRequired">

 <decision-state id="shippingRequired">

 <action bean="shippingService" method="isShippingRequired"/>

 <transition on="yes" to="enterShippingDetails"/>

 <transition on="no" to="placeOrder"/>

 </decision-state>

 ...

 </flow>

This state definition reads "if the isShippingRequired method on the shippingService returns true, transition to the enterShippingDetails state, otherwise transition to the placeOrder state."

Note how the boolean return value of the isShippingRequired method is converted to the event identifiers yes or no.

This conversion process is handled by the action adapter responsible for adapting the method on your application object to the org.springframework.webflow.Action interface. By default, this adapter applies a number of rules for creating a result event from a method return value.

These conversion rules are:

Table 2.12. Default method return value to Event conversion rules
	Return type
	Event identifier

	boolean
	yes or no

	java.lang.Enum
	this.name()

	org.springframework.core.enum.LabeledEnum
	this.getLabel()

	null
	null

You may customize these default conversion policies by setting a custom EventFactory instance on the bean invoking action performing the adaption.

2.6.3.3. DecisionState XML - decision action with enum return value

The following example constructs a DecisionState from XML that executes a action that invokes a method on an application object that returns a java.lang.Enum:

 <flow start-state="shippingRequired">

 <decision-state id="shippingRequired">

 <action bean="shippingService" method="calculateShippingMethod(${flowScope.order})"/>

 <transition on="BASIC" to="enterBasicShippingDetails"/>

 <transition on="EXPRESS" to="enterExpressShippingDetails"/>

 <transition on="NONE" to="placeOrder"/>

 </decision-state>

 ...

 </flow>

This state definition reads "if the getShippingMethod method on the shippingService returns BASIC for the current order, transition to the enterBasicShippingDetails state. If the return value is EXPRESS transition to the enterExpressShippingDetails state. If the return value is NONE transition to the placeOrder state."

2.6.4. SubflowState

When entered, a subflow state spawns another flow as a subflow.

Recall that a flow is a reusable, self-contained controller module. The ability for one flow to call another flow gives you the ability to compose independent modules together to create complex controller workflows. Any flow can be used as subflow by any other flow, and there is a well-defined contract in play by what it means to be a flow. Specifically:

1. A Flow is an instance of org.springframework.webflow.Flow.

2. A newly launched flow can be passed input attributes which it may choose to map into its own local scope.

3. An ending flow can return output attributes. If the ended flow was launched as a subflow, the resuming parent flow may choose to map the output attributes into its own scope.

It is helpful to think of the process of calling a flow as similiar to calling a Java method. Flows can be passed input arguments and can produce return values just like methods can. Flows are more powerful because they are potentially long-running, as they can span more than one request into the server.

The properties of a org.springframework.webflow.SubflowState are summarized below:

Table 2.13. SubflowState properties
	Property name
	Description
	Cardinality
	Default value

	subflow
	The definition of the flow to be spawned as a subflow.
	1
	

	attributeMapper
	The strategy responsible for mapping input attributes to the subflow and mapping output attributes from the subflow.
	0..*
	Null

When a SubflowState is entered, the following behavior occurs:

1. The state first messages its attributeMapper, an instance of org.springframework.webflow.FlowAttributeMapper, to prepare a Map of input attributes to pass to the subflow.

2. The subflow is spawned, passed the input attributes. When this happens, the parent flow suspends itself in the subflow state until the subflow ends.

3. When the subflow ends, a result event is returned describing the flow outcome that occurred. The parent flow resumes back in the subflow state.

4. The resumed subflow state messages its attributeMapper to map any output attributes returned by the subflow into flow scope, if necessary.

5. Finally, the resumed subflow state responds to the result event returned by the ended subflow by matching and executing a state transition.

The constructs used in spawning a flow as a subflow is shown graphically below:

[image: image8.png]
SubflowState class diagram

2.6.4.1. SubflowState XML - with input attribute

The following example constructs a SubflowState from XML that spawns a shipping subflow:

 <flow start-state="enterOrderInformation">

...

 <subflow-state id="enterShippingDetails" flow="shipping"<

 <attribute-mapper>

 <input-attribute value="${flowScope.order.shipping}" name="shipping"/>

 </attribute-mapper>

 <transition on="finish" to="placeOrder"/>

 </subflow-state>

 ...

 </flow>

This subflow state definition reads "spawn the shipping flow and pass it the value of the shipping property on the order object in flow scope as an input attribute with the name shipping. When the shipping flow ends, respond to the finish result event by transitioning to the placeOrder state."

Note how the inner structure and behavior of the shipping flow is fully encapsulated within its own flow definition. A flow calling another flow as a subflow can pass that flow input and capture its output, but it cannot see inside it. Flows are black boxes. Because any flow can be used as a subflow, it can be reused in other contexts without change.

2.6.4.2. SubflowState API - input attributes

The following illustrates the equivalent example using the FlowBuilder API:

 public class OrderFlowBuilder extends AbstractFlowBuilder {

public void buildStates() {

 ...

 addSubflowState("enterShippingDetails", flow("shipping"), shippingMapper(),

 transition(on("finish"), to("placeOrder")));

 ...

 }

 protected FlowAttributeMapper shippingMapper() {

 ParameterizableFlowAttributeMapper mapper = new ParameterizableFlowAttributeMapper();

 mapper.addMapping("${flowScope.order.shipping}", "shipping");

 return mapper;

}

 }

2.6.5. EndState

When entered, an end state terminates a flow. A EndState represents exactly one logical flow outcome; for example, "finish", or "cancel".

If the ended flow was acting as a top-level or root flow the entire flow execution ends and cannot be resumed. In this case the end state is responsible for making a ViewSelection that is the basis for the ending response (for example, a confirmation page, or a redirect request to an external URL).

If the ended flow was acting as a subflow, the spawned subflow session ends and the calling parent flow resumes by responding to the end result returned. In this case the responsibility for any ViewSelection falls on the parent flow.

Once a flow ends any attributes in flow scope go out of scope immediately and become eligible for garbage collection.

As outlined, an end state entered as part of a root flow messages its ViewSelector to make a ending view selection. Typically this is a RedirectViewSelector, allowing for redirect after flow completion. An end state entered as part of a subflow is not responsible for a view selection; this responsibility falls on the calling flow.

2.6.5.1. EndState result events

When a EndState is entered it terminates a flow and, if used as subflow, returns a result event the parent flow uses to drive a state transition from the calling subflow state. It is the end state's responsibility to create this result event which is the basis for communicating the logical flow outcome to callers.

By default, an EndState creates a result event with an identifier that matches the identifier of the end-state itself. For example, an end state with id finish returns a result event with id finish. Also by default, any attributes in flow scope that have been explicitly marked as output attributes are returned as result event parameters.

Spring Web Flow gives you full control over the ending view selection strategy, as well as what flow attributes should be exposed as output on a per EndState basis. These configurable properties are summarized below:

Table 2.14. EndState properties
	Property name
	Description
	Cardinality
	Default value

	viewSelector
	The strategy that makes the ending view selection when this state is entered and the flow is a root flow.
	0..1
	Null

	outputAttributeNames
	The names of attributes in flow scope that should be exposed as output; thus being made eligible for output mapping by a calling flow.
	0..*
	None

2.6.5.2. EndState XML - output attribute

The following example constructs an EndState from XML that terminates a shipping subflow:

 <flow start-state="enterShippingDetails">

...

 <end-state id="finish">

 <output-attribute name="shipping"/>

 </end-state>

 </flow>

This end state definition reads "terminate the shipping flow and expose the shipping property in flow scope as an output attribute."

Since this end-state does not make a view selection it is expected this flow will be always used as a subflow. When this flow ends, the calling parent flow is expected to respond to the finish result, and may map the shipping attribute into its own scope.

2.6.5.3. EndState API - output attribute

The following illustrates the equivalent example using the FlowBuilder API:

 public class ShippingFlowBuilder extends AbstractFlowBuilder {

public void buildStates() {

 ...

 addEndState("finish", new String[] { "shipping" });

 }

 }

2.6.5.4. EndState XML - redirect after flow completion

The following example constructs an EndState from XML that terminates a shipping subflow and requests a redirect response to an external URL:

 <flow start-state="enterOrderInformation">

 ...

 <end-state id="finish" view="redirect:/orders/${flowScope.order.id}"/>

 </flow>

This end state definition reads "terminate the order flow and request a redirect to the URL returned by evaluating the /orders/${flowScope.order.id} expression."

This is an example of the familiar redirect after post pattern where after transaction completion a redirect is issued allowing the result of the transaction to be viewed (in this case using REST-style URLs).

Chapter 3. Flow execution

3.1. Introduction

Once a flow has been defined any number of executions of it can be launched in parallel at runtime. Execution of a flow is carried out by a dedicated system that is based internally on a state machine that runs atop the Java VM. As the life of a flow execution can span more than one request into the server, this system is also responsible for persisting conversational state across requests.

This chapter documents Spring Web Flow's flow execution system. You'll learn the core constructs of the system and how to execute flows out-of-container within a JUnit test environment.

3.2. FlowExecution

A flow execution is a single instance of a flow at a given point in time, realized by an instance of org.springframework.webflow.execution.FlowExecution. A flow execution represents the state of a conversation at a point in time. Given an instance of org.springframework.webflow.Flow, any number of flow executions can be created. A flow definition serves as the instructional blueprint for a flow execution.

It may be helpful to think of a flow as analagous to Class and a flow execution as analagous to an instance of that Class.

Once created, a new flow execution is initially inactive, waiting to be started. Once started, a flow execution enters its startState and continues executing until it enters a ViewState where user input is required to continue or it enters an EndState where it terminates.

When a flow execution reaches a ViewState it is said to have paused, where it waits in that state for user input to be provided so it can continue. After pausing the ViewSelection returned is typically used to issue a response to the user that provides a vehicle for collecting the required input.

User input is provided by signaling an event that resumes the flow execution by communicating what user action was taken. Parameters sent in the signal event request form the basis for user input. The flow execution responds to an event in standard fashion by executing a matching state transition in the resuming ViewState.

Once a flow execution has resumed after being paused by a view state, it continues executing until it again enters another view state or enters an end state where it terminates. Once a flow execution has terminated it cannot be resumed.

3.2.1. Flow execution lifecycle

As outlined, a flow execution can go through a number of phases throughout its lifecycle; for example, created, active, paused, ended.

Spring Web Flow gives you full control over the ability to observe the lifecycle of an executing flow by implementing a org.springframework.webflow.execution.FlowExecutionListener.

The different phases of a flow execution is shown graphically below:

[image: image9.png]
Flow execution lifecycle

3.2.2. Flow execution properties

The configurable properties of a flow execution are summarized below:

Table 3.1. Flow Execution properties
	Property name
	Description
	Cardinality
	Default value

	flow
	The definition of the flow to be executed.
	1
	

	listeners
	The set of observers observing the lifecycle of the flow execution.
	0..*
	Empty

The configurable constructs related to flow execution are shown graphically below:

[image: image10.png]
Flow execution

3.3. Flow execution context

Once created, a flow execution, representing the state of a conversation at a point in time, maintains contextual state about itself that can be reasoned upon by clients. In addition, a flow execution exposes two data structures, called scopes, that allow clients to set arbitrary attributes that are managed by the conversation.

The contextual properties associated with a flow execution are summarized below:

Table 3.2. Flow Execution properties
	Property name
	Description
	Cardinality
	Default value

	active
	A flag indicating if the flow execution is active. An inactive flow execution has either ended or has never been started.
	1
	

	flow
	The definition of the flow execution. The flow serves as the blueprint for the conversation. It may be helpful to think of a flow as like a Class and a flow execution as like an instance of that Class. This method may always be safely called.
	1
	

	activeSession
	The active flow session, tracking the flow that is currently executing and what state it is in. The active session can change over the life of the flow execution because a flow can spawn another flow as a subflow. This property can only be queried while the flow execution is active.
	1
	

	scope
	A data map that forms the basis for conversational scope. Arbitrary attributes placed in this map will be retained for the scope of the conversation. This map is shared by all flow sessions.
	1
	

As a flow execution is manipulated by clients its contextual state changes. Consider how contextual state is effected when the following events occur:

Table 3.3. An ordered set of events and their effects on flow execution context
	Flow Execution Event
	Active?
	Value of the activeSession property

	created
	false
	Throws an IllegalStateException

	started
	true
	A FlowSession whose flow is the top-level flow and whose state is the flow's start state.

	state entered
	true
	A FlowSession whose flow is the top-level flow and whose state is the newly entered state.

	subflow spawned
	true
	A FlowSession whose flow is the subflow and whose state is the subflow's start state.

	subflow ended
	true
	A FlowSession whose flow is again the top-level flow and whose state is the resuming state.

	ended
	false
	Throws an IllegalStateException

As you can see, the activeSession of a flow execution changes when a subflow is spawned. Each flow execution maintains a stack of flow sessions, where each flow session represents a spawned instance of a flow definition. When a flow execution starts, the session stack initially consists of one (1) entry, an instance dubbed the root session. When a subflow is spawned, the stack increases to two (2) entries. When the subflow ends, the stack decreases back to one (1) entry. The active session is always the session at the top of the stack.

The contextual properties associated with a org.springframework.webflow.FlowSession are summarized below:

Table 3.4. Flow Session properties
	Property name
	Description
	Cardinality
	Default value

	flow
	The definition of the flow the session is an instance of.
	1
	

	state
	The current state of the session.
	1
	

	status
	A status indicator describing what the session is currently doing. Valid values are CREATED, ACTIVE, PAUSED, SUSPENDED, RESUMING, ENDING, and ENDED.
	1
	

	scope
	A data map that forms the basis for flow scope. Arbitrary attributes placed in this map will be retained for the scope of the flow session. This map is local to the session.
	1
	

The following graphic illustrates an example flow execution context and flow session stack:

[image: image11.png]
Flow execution context

In this illustration a flow execution has been created for the Book Flight flow. The execution is currently active and the activeSession indicates it is in the Display Seating Chart state of the Assign Seats flow, which was spawned as a subflow from the Enter Seat Assignments state.

Note how the active session status is paused, indicating the flow execution is currently waiting for user input to be provided to continue. In this case, it is expected the user will choose a seat for their flight.

3.4. Flow execution testing

Spring Web Flow provides support within the org.springframework.webflow.test package for testing flow executions with JUnit. This support is provided as convenience but is entirely optional, as a flow execution is instantiable in any environment with the standard new operator.

The general strategy for testing flows follows:

1. Your own implementations of definitional artifacts used by a flow such as actions, attribute mappers, and exception handlers should be unit tested in isolation. Spring Web Flow ships convenient stubs to assist with this.

2. The execution of a flow should be tested as part of a system integration test. Such a test should exercise all possible paths of the flow, asserting that the flow responds to events as expected.

Note: a flow execution integration test may select mock or stub implementations of application services called by the flow and/or may exercise production implementations. Both are useful system test configurations.

3.4.1. Flow execution test example

To help illustrate testing a flow execution, first consider the following flow to search a phonebook for contacts:

[image: image12.png]
Phonebook Search Flow - UML Model

[image: image13.png]
Phonebook Search Flow - XML Definition

Above you see a flow with four (4) states that execute these behaviors, respectively:

1. The first state displays a search criteria form so the user can enter who they wish to search for.

2. On form submit and successful data binding and validation the search is executed.

3. After search execution, a results page is displayed.

4. From the results page the user may select a result they wish to browse additional details on or they may request a new search. On select, the "detail" flow is spawned and when it finishes the search is re-executed.

From this behavior narrative the following assertable test scenarios can be extracted:

1. That when a flow execution starts, it enters the enterCriteria state and makes a searchCriteria view selection containing a form object to be used as the basis for form field population.

2. That on submit with valid input, the search is executed and a searchResults view selection is made.

3. That on submit with invalid input, the searchCriteria view is selected.

4. That on newSearch, the searchCriteria view is selected.

5. That on select, the detail flow is spawned and passed the id of the selected result as expected.

To assist with writing these assertions Spring Web Flow ships with JUnit-based flow execution test support within the org.springframwork.webflow.test package. These base test classes are indicated below:

Table 3.5. Flow execution test support hierarchy
	Class name
	Description

	AbstractFlowExecutionTests
	The most generic base class for flow execution tests.

	AbstractExternalizedFlowExecutionTests
	The base class for flow execution tests whose flow is defined within an externalized resource, such as a file.

	AbstractXmlFlowExecutionTests
	The base class for flow execution tests whose flow is defined within an externalized XML resource.

The completed test for this example extending AbstractXmlFlowExecutionTests is shown below:

 public class SearchFlowExecutionTests extends AbstractXmlFlowExecutionTests {

 public void testStartFlow() {

 ViewSelection view = startFlow();

 assertCurrentStateEquals("enterCriteria");

 assertViewNameEquals("searchCriteria", view);

 assertModelAttributeNotNull("searchCriteria", view);

 }

 public void testCriteriaSubmitSuccess() {

 startFlow();

 Map input = new HashMap();

 input.put("firstName", "Keith");

 input.put("lastName", "Donald");

 // submit with valid input

 ViewSelection view = signalEvent("submit", input);

 assertCurrentStateEquals("displayResults");

 assertViewNameEquals("searchResults", view);

 assertModelAttributeCollectionSize(1, "results", view);

 }

 public void testCriteriaSubmitError() {

 startFlow();

 // submit with no input

 signalEvent("submit");

 assertCurrentStateEquals("enterCriteria");

 }

 public void testNewSearch() {

 testCriteriaSubmitSuccess();

 ViewSelection view = signalEvent("newSearch");

 assertCurrentStateEquals("enterCriteria");

 assertViewNameEquals("searchCriteria", view);

 }

 public void testSelectValidResult() {

 testCriteriaSubmitSuccess();

 Map input = new HashMap();

 input.put("id", "1");

 // select with valid input

 ViewSelection view = signalEvent("select", input);

 assertCurrentStateEquals("displayResults");

 assertViewNameEquals("searchResults", view);

 assertModelAttributeCollectionSize(1, "results", view);

 }

 /**

 * A stub for testing.

 */

 private PhoneBook phonebook = new ArrayListPhoneBook();

 @Override

 protected ExternalizedFlowDefinition getFlowDefinition() {

 File flowDir = new File("src/webapp/WEB-INF/flows");

 File file = new File(flowDir, "search-flow.xml");

 return new ExternalizedFlowDefinition(new FileSystemResource(file));

 }

 @Override

 protected FlowArtifactFactory createFlowArtifactFactory() {

 return new TestFlowArtifactFactory();

 }

 /**

 * Used to wire in test implementations of artifacts used by the flow, such

 * as the phonebook and the detail subflow

 */

 protected class TestFlowArtifactFactory extends FlowArtifactFactoryAdapter {

 public Action getAction(FlowArtifactParameters parameters){

 // there is only one global action used by this flow, phonebook

 return new LocalBeanInvokingAction(phonebook);

 }

 public Flow getSubflow(String id) {

 // there is only one subflow, detail

 Flow detail = new Flow(id);

 // test responding to finish result by stubbing detail flow

 EndState finish = new EndState(detail, "finish");

 finish.addEntryAction(new AbstractAction() {

 public Event doExecute(RequestContext context) {

 // test attribute mapping behavior

 assertEquals(new Long(1), context.getFlowScope().getAttribute("id"));

 return success();

 }

 });

 return detail;

 }

 }

 }

With a well-written flow execution test passing that covers the controller behavior scenarios possible for your flow you have concrete evidence the flow will execute as expected when deployed in container.

[image: image14.png]
Go for Green

Chapter 4. Flow execution repositories
4.1. Introduction
A flow execution represents an executing flow at a point in time. At runtime there can be any number of flow executions active in parallel. A single user can even have multiple executions active at the same time (for example, when a user is operating multiple windows or tabs within their browser).
Many of these flow executions span multiple requests into the server and therefore must be saved so they can be resumed on subsequent requests. This presents technical challenges, as there must exist a stable mechanism for a new request to be associated with an existing execution in the view state that matches what the user expects. This problem is more difficult when you consider that many applications require use of browser navigational buttons, and use of these buttons involves updating local history without notifying the server.

The problem of flow execution persistence is addressed by Spring Web Flow's flow execution repository subsystem. In this chapter, you will learn how to use the system to manage the storage of active web conversations in a stable manner.
4.2. Repository architecture overview
Recall the following bullet points noting what happens when a flow execution enters a ViewState:
1. When a flow execution reaches a ViewState it is said to have paused, where it waits in that state for user input to be provided so it can continue. After pausing, the ViewSelection returned is used to issue a response to the user that provides a vehicle for collecting the required user input.

2. User input is provided by signaling an event that resumes the flow execution in the paused view state. The input event communicates what user action was taken.

Each time an active flow execution is paused, it is saved out to a repository. When the next request comes in for that flow execution, it is restored from the repository, resumed, and continued. This process continues until the flow execution reaches an end state, at which time it is removed from the repository.

This process is demonstrated over the next two graphics:

[image: image15.png]
Request one (1) - Paused flow execution persistence
[image: image16.png]
Request two (2) - Paused flow execution restoration, removal on end
4.3. Flow execution identity
When a new flow execution is created, it marks the start of a new conversation between a browser and the server. A new flow execution that is still active after startup processing indicates the start of a conversation that will span more than one request and needs to be persisted. When this is the case, that flow execution is assigned a persistent identifer by the repository. By default, the structure of this identifier consists of a two-part composite key. This key is used by clients to restore the flow execution on subsequent requests.

4.3.1. Conversation identifier
The first part of a flow execution's persistent identity is a unique conversation identifier. This serves as an index into the logical conversation between the browser and the server that has just started.

4.3.2. Continuation identifier
The second part of a flow execution's persistent identity is a continuation identifier. This identifier serves as an index into a flow execution representing the state of the conversation at this point in time.

4.3.3. Flow execution key
Together the conversation id plus the continuation id make up the unique two-part flow execution key that identifies a state of a conversation at a point in time. By submitting this key in a subsequent request, a browser can restore the conversation at that point and continue from there.
So on a subsequent request the conversation is resumed by restoring a flow execution from the repository using the two-part key. After event processing, if the flow execution is still active it is saved back out to the repository. At this time a new flow execution key is generated. That key retains the same conversation identifier, as the same logical conversation is in progress; however the continuation identifier changes to provide an index into the state of the flow execution at this new point in time.

By submitting this new key in a subsequent request a browser can restore the conversation at that point and continue from there. This process continues until a flow execution reaches an end state during event processing signaling the end of the conversation.

4.4. Conversation invalidation after completion

When a flow execution reaches an end state it terminates. If the flow execution was associated with a logical conversation that spanned more than on request, it is removed from the repository. More specifically, the entire conversation is invalidated, resulting in any flow executions associated with the conversation being purged. This process is dubbed conversation invalidation after completion.

Once a conversation has been invalidated the conversation identifier is no longer valid and cannot ever be used again.

4.5. Flow execution repository implementations

The next section looks at the repository implementations that are available for use with Spring Web Flow out-of-the-box.

4.5.1. Simple flow execution repository

The simplest possible repository and the default implementation. This repository is stateful, managed in the user session, and stores exactly one flow execution instance per conversation, invalidating it when its end state is reached. This repository implementation has been designed with minimal storage overhead in mind.

It is important to understand that use of this repository consistently prevents duplicate submission when using the back button. If you attempt to go back and resubmit, the continuation id stored in your browser history will not match the current continuation id needed to access the flow execution and access will be disallowed.

This repository implementation should generally be used when you do not have to support browser navigational button use; for example, when you lock down the browser and require that all navigation events to be routed through Spring Web Flow.

4.5.2. Continuation flow execution repository

This repository is stateful, managed in the user session, and stores one to many flow execution instances per conversation, where each flow execution represents a restorable state of the conversation at a point in time. This repository implementation is considerably more flexible than simple but incurs more storage overhead.

It is important to understand that use of this repository allows resubmission when using the back button. If you attempt to go back and resubmit while the conversation is active, the continuation id stored in your browser history will match the continuation id of a previous flow execution in the repository. Access to that flow execution representing the state of the conversation at that point in time will be granted.

Like simple, this repository implementation provides support for conversation invalidation after completion where once a logical conversation completes (by one of its FlowExecutions reaching an end state), the entire conversation is invalidated. This prevents the possibility of resubmission after completion.

This repository is more elaborate than the simple repository, offering more power (by enabling multiple continuations to exist per conversation), but incurring more storage overhead. This repository implementation should be considered when you do have to support browser navigational button use; for example, you cannot lock down the browser and have all navigation events to be routed explicitly through Spring Web Flow.

4.5.3. Client continuation flow execution repository

This repository is entirely stateless, and its use entails no server-side state.

This is achieved by encoding a serialized flow execution directly into the flow execution continuation key that is sent in the response.

When asked to load a flow execution by its key on a subsequent request, this repository decodes and deserializes the flow execution, restoring it to the state it was in when it was serialized.

Note this repository implementation does not currently support conversation invalidation after completion, as this capability requires tracking active conversations using some form of centralized storage, like a database table. This implementation will be likely enhanced in a future release to provide this capability.

Also note that storing state (a flow execution continuation) on the client entails a certain security risk that should be evaluated.

Chapter 5. Flow executors

5.1. Introduction

Flow executors are the highest-level entry points into the Spring Web Flow system, responsible for driving the execution of flows across a variety of environments.

In this chapter you'll learn how to execute flows within Spring MVC, Struts, and Java Server Faces (JSF) based applications.

5.2. FlowExecutor

org.springframework.webflow.FlowExecutor is the central facade interface external systems use to drive the execution of flows. This facade acts as a simple, convenient service entry-point into the Spring Web Flow system that is reusable across environments.

The FlowExecutor interface is shown below:

 public interface FlowExecutor {

 ResponseInstruction start(String flowId, ExternalContext context);

 ResponseInstruction signalEvent(String eventId, FlowExecutionKey flowExecutionKey, ExternalContext context);

 ResponseInstruction getCurrentResponseInstruction(Serializable conversationId, ExternalContext context);

 }

As you can see there are three central use-cases fulfilled by this interface:

1. Start a new flow execution.

2. Resume a paused flow execution by signaling an event in its current state.

3. Request that the last response issued by an active conversation be re-issued. Unlike start and signalEvent, this is an idempotent operation that does not affect the state of the flow.

Each operation accepts an ExternalContext that provides normalized access to properties of an external system that has called into Spring Web Flow, allowing access to environment-specific request parameters as well as request, session, and application-level attributes.

Each operation returns a ResponseInstruction which the calling system is expected to use to issue a suitable response.

These relationships are shown graphically below:

[image: image17.png]
Flow executor

As you can see, an ExternalContext implementation exists for each of the environments Spring Web Flow supports. If a flow artifact such as an action needs to access native constructs of the calling environment it can downcast the context to the specific implementation. The need for such downcasting is considered a special case.

5.2.1. FlowExecutorImpl

The default executor implementation is org.springframework.webflow.executor.FlowExecutorImpl. It allows for configuration of the flow locator responsible for loading the flow definitions to execute, as well as the flow execution repository strategy responsible for persisting flow executions that remain active beyond a single request into the server.

The configurable FlowExecutorImpl properties are shown below:

Table 5.1. FlowExecutorImpl properties
	Property name
	Description
	Cardinality
	Default value

	flowLocator
	The service for loading flow definitions to be executed, typically a flow registry
	1
	

	repositoryFactory
	The factory for loading repositories to create, save, and restore flow executions
	1
	SimpleFlowExecutionRepositoryFactory

5.2.2. A typical flow executor configuration

 <bean id="flowExecutor" class="org.springframework.webflow.executor.FlowExecutorImpl">

 <constructor-arg ref="flowRegistry"/>

 </bean>

 <bean id="flowRegistry" class="org.springframework.webflow.registry.XmlFlowRegistryFactoryBean">

 <property name="flowLocations" value="/WEB-INF/flows/**/*-flow.xml"/>

 </bean>

This instructs Spring to create a flow executor that can execute all XML-based flow definitions contained within the /WEB-INF/flows directory.

5.2.3. A flow executor with a custom repository factory

 <bean id="flowExecutor" class="org.springframework.webflow.executor.FlowExecutorImpl">

 <constructor-arg ref="repositoryFactory"/>

 </bean>

 <bean id="repositoryFactory" class="org.springframework.webflow.execution.repository.continuation.ContinuationFlowExecutionRepositoryFactory">

 <constructor-arg ref="flowRegistry"/>

 </bean>

 <bean id="flowRegistry" class="org.springframework.webflow.registry.XmlFlowRegistryFactoryBean">

 <property name="flowLocations" value="/WEB-INF/flows/**/*-flow.xml"/>

 </bean>

This executor is configured with a continuation-based repository factory, which accesses stateful continuation repositories managed in the user session.

5.3. Spring MVC integration

Spring Web Flow integrates with both Servlet and Portlet MVC which ship with the core Spring Framework. Use of Portlet MVC requires Spring 2.0.

For both Servlet and Portlet MVC a FlowController acts as an adapter between Spring MVC and Spring Web Flow. As an adapter, this controller has knowledge of both systems and delegates to a flow executor for driving the execution of flows. One controller typically executes all flows of an application, relying on parameterization to determine what flow to launch or what flow execution to resume.

5.3.1. A single flow controller executing all flows in a Servlet MVC environment

 <bean name="/flowController.htm" class="org.springframework.webflow.executor.mvc.FlowController">

 <constructor-arg ref="flowExecutor"/>

 </bean>

This controller, exported at the context-relative /flowController.htm URL, delegates to the configured flow executor for driving flow executions in a Spring Servlet MVC environment.

5.3.2. A single portlet flow controller executing a flow within a Portlet

 <bean id="portletModeControllerMapping" class="org.springframework.web.portlet.handler.PortletModeHandlerMapping">

 <property name="portletModeMap">

 <map>

 <entry key="view" value-ref="flowController"/>

 </map>

 </property>

 </bean>

 <bean id="flowController" class="org.springframework.webflow.executor.mvc.PortletFlowController">

 <constructor-arg ref="flowExecutor"/>

 <property name="defaultFlowId" ref="search-flow"/>

 </bean>

This controller, exported for access with the configured portlet mode, delegates to the configured flow executor for driving flow executions in a Spring Portlet MVC environment (by default, an execution of the search-flow).

5.4. Flow executor parameterization

Spring Web Flow allows for full control over how flow executor method parameters such as the flowId, flowExecutionKey, eventId, and conversationId are extracted from an incoming controller request with the org.springframework.webflow.executor.support.FlowExecutorParameterExtractor strategy. The default strategy is request-parameter based. Support for request path-based parameter extraction (REST-style URLs) is also provided.

The next several examples illustrate strategies for parameterizing flow controllers from the browser to launch and resume flow executions:

5.4.1. Launching a flow execution - parameter-style anchor

5.4.2. Launching a flow execution - REST-style anchor

5.4.3. Launching a flow execution - form

 <form action="flowController.htm" method="post">

 <input type="submit" value="Go"/>

 <input type="hidden" name="_flowId" value="myflow">

 </form>

5.4.4. Resuming a flow execution - anchor

The string-encoded _flowExecutionId parameter is parsed into a FlowExecutionKey identity object automatically, using a FlowExecutionKeyFormatter by default.

5.4.5. Resuming a flow execution - form

 <form action="flowController.htm" method="post">

 ...

 <input type="hidden" name="_flowExecutionId" value="${flowExecutionId}">

 <input type="hidden" name="_eventId" value="submit"/>

 <input type="submit" class="button" value="Submit">

 </form>

The string-encoded _flowExecutionId parameter is parsed into a FlowExecutionKey identity object automatically, using a FlowExecutionKeyFormatter by default.

5.4.6. Resuming a flow execution - multiple form buttons

 <form action="flowController.htm" method="post">

 ...

 <input type="hidden" name="_flowExecutionId" value="${flowExecutionId}">

 <input type="submit" class="button" name="_eventId_submit" value="Submit">

 <input type="submit" class="button" name="_eventId_cancel" value="Cancel">

 </form>

The string-encoded _flowExecutionId parameter is parsed into a FlowExecutionKey identity object automatically, using a FlowExecutionKeyFormatter by default. The eventId is determined by parsing the parameter name of the button that was pressed.

5.5. Struts integration

Spring Web Flow integrates with Struts 1.x or >. The integration is very similiar to Spring MVC, where a single front controller (FlowAction) drives the execution of all flows for the application, delegating to a configured flow executor.

5.5.1. A single flow action executing all flows

 <form-beans>

 <form-bean name="actionForm" type="org.springframework.web.struts.SpringBindingActionForm"/>

 </form-beans>

 <action-mappings>

 <action path="/flowAction" name="actionForm" scope="request" type="org.springframework.webflow.executor.struts.FlowAction"/>

 </action-mappings>

5.6. Java Server Faces (JSF) integration

Spring Web Flow integrates with JSF. The JSF integration relies on custom implementations of core JSF artifacts such as navigation handler and phase listener to drive the execution of flows.

5.6.1. A typical faces-config.xml file

<faces-config>

 <application>

 <navigation-handler>

 org.springframework.webflow.executor.jsf.FlowNavigationHandler

 </navigation-handler>

 <property-resolver>

 org.springframework.webflow.executor.jsf.FlowPropertyResolver

 </property-resolver>

 <variable-resolver>

 org.springframework.webflow.executor.jsf.FlowVariableResolver

 </variable-resolver>

 <variable-resolver>

 org.springframework.web.jsf.DelegatingVariableResolver

 </variable-resolver>

 <variable-resolver>

 org.springframework.web.jsf.WebApplicationContextVariableResolver

 </variable-resolver>

 </application>

 <lifecycle>

 <phase-listener>org.springframework.webflow.executor.jsf.FlowPhaseListener</phase-listener>

 </lifecycle>

</faces-config>

5.6.2. Launching a flow execution - command link

 <h:commandLink value="Go" action="flowId:myflow"/>

5.6.3. Resuming a flow execution - form

 <h:form id="form">

 ...

 <h:inputText id="propertyName" value="#{flowScope.managedBeanName.propertyName}"/>

 ...

 <input type="hidden" name="_flowExecutionId" value="${flowExecutionId}">

 <h:commandButton type="submit" value="Next" action="submit"/>

 </h:form>

5.7. Sample applications

It is recommended that you review the Spring Web Flow sample applications included in the release distribution for best-practice illustrations of the features of this framework. A description of each sample is provided below:

1. Phonebook - the central sample demonstrating most features (including subflows).

2. Sellitem - demonstrates a wizard with conditional transitions, conversational scope, and continuations.

3. Flowlauncher - demonstrates all the possible ways to launch and resume flows.

4. Itemlist - demonstrates REST-style URLs, conversational redirects, and inline flows.

5. Shippingrate - demonstrates Spring Web Flow together with Ajax technology.

6. Birthdate - demonstrates Struts integration and the MultiAction.

7. Fileupload - demonstrates multipart file upload.

8. Phonebook-Portlet - the phonebook sample in a Portlet environment (notice how the flow definitions do not change)

9. Sellitem-JSF - the sellitem sample in a JSF environment (notice how the flow definition does not change)

Chapter 6. Spring Web Flow Showcase
6.1. Introduction
The purpose of Spring showcase is to show the values of Spring product function. It indicates a additional source from which you can get details.
This chapter includes the showcases of Spring Web Flow.
