Logging Service
Summary
The e-government framework has adopted Log4j, as the open source, that can use Log4j to leave logs.

Logging helps easy understanding the system conditions by registering the events that that occur in developing or operation the systems. The general method that developers use to print logs is System.out.println(). This method is easy but not recommended due to the following reasons.

· Even though the console log is redirected to the output file, the file could be overwritten when the application server restarts.
· It is not a good method that System.out.println() is used only in development and testing and deleted before transfer to operation.
· System.out.println() call is synchronized during disk I/O and the system throughput is lowered.

· By default, the stack trace results are left in the console. But it is not trace exception via the console during the system operation.
It is because the code in operation may work differently from the code in test. There is a need for a mechanism that can manage logging declaratively while having both testing code and operating code and minimize the performance overhead during operation.
Description
How to Set Up the Environment for Log4j

There are two ways of configuring the Log4j environment.

· To configure directly in progrmaing
· To use a configuration file

Description of Main Components
1. Logger: that component that logs (class that prepare log files) – Almost all logging functions except configuration are handled through logger. You can define the logger per application and designate the log level and Appender.

The logger has a log level and whether to output a log is determined from log sentence level and logger level.

- Decide which logger to use before writing an application.

 ex) static Logger logger = Logger.getLogger(SimpleLog.class);

[Reference] Commons-Logging has a wrapper class.

2. Appender : location that outputs logs

- This is a location that output logs. From the class name that ends with XXXAppender in Log4J API document, the output location can be roughly guessed.
 http://logging.apache.org/log4j/docs/api/index.html

3. Layout : Appender’s output format – select date, time, class name or other and designate them as log information.

 For detailed pattern, refer to the following class information.

 http://logging.apache.org/log4j/docs/api/org/apache/log4j/PatternLayout.html

Types of Layout
 1) DateLayout,

 2) HTMLLayout,

 3) PatternLayout, (In general, using PatternLayout is suitable for debugging)

 4) SimpleLayout,

 5) XMLLayout

Pattern layout description
ex) ”[%d{yyyy-MM-dd HH:mm:ss}] %-5p [%l] - %m%n

	Pattern layout
	description

	C
	Output the class name. Add DateLayout or something to output class names or certain packages only.

	d
	Output the log time. You can set an output format in java.text.SimpleDateFormat.

	F
	Output the file name. The used method and line number are output together with the file name.

	L
	Output the line number only.

	m
	Output the message delivered to log.

	M
	Output the method name that carried out log.

	n
	New line

	p
	Log event name (DEBUG, etc.)

	r
	Log handling time (milliseconds)

Designating the Log Level
Basically the log4j has five log levels: debug, info, warn, error and fatal.

Each can use five methods to leave logs respectivly: debug(), info(), warn(), error() and fatal().

Log levels are as follows. (FATAL > ERROR > WARN > INFO > DEBUG > TRACE)

	Log level
	Description

	fatal
	A very serious error had occurred such as when a very severe system error occurs and applications cannot work. In general, this is not used in applications.

	error
	An error has occurred while handling a request.

	warn
	The problem can be handled, but it issues the alarm, as it can cause a system error.

	info
	Informative message such as login or status change.

	debug
	Messages used for debugging in development

	trace
	A newly added level in log4j1.2.12. It shows more detailed status to handle the one whose debug level is too wide.

But, if there is a log level designated in Logger’s setLevel, the logging events below the designated log level are ignored.

Therefore logs do not remain. Like the following,

logger.setLevel(Level.INFO);

if designated in the code, among the following three codes,

logger.debug("debug log");

logger.info("info log");

logger.warn("warning log");

the debug log does not remained but the info and warn logs remain. Java has no pre-processor as in C and therefore as in #ifdef DEBUG, you cannot produce separate debugging codes for debugging and release. So this function of log4j is very convenient in the log management.

Appender

log4j can support various log output subjects and methods such as console, file, DB, socket, message and mail and define diversely by using its Appender.

ConsoleAppender : appender for outputting on the console screen. org.apache.log4j.ConsoleAppender : Appender for outputting on the console screen. The followings are property definition for ConsoleAppender in log4j.xml file.

<appender name="console" class="org.apache.log4j.ConsoleAppender">

<!-- ref.) attr : Encoding, ImmediateFlush, Target, Threshold -->

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%d %5p [%c] %m%n" />

</layout>
</appender>

FileAppender : FileAppender is used to log in the file.

<appender name="file" class="org.apache.log4j.FileAppender">

<!--

ref.) attr : Append, Encoding, BufferedIO, BufferSize, File,

ImmediateFlush, Threshold

-->

<param name="File" value="./logs/file/sample.log" />

<!-- Set Append false so that the file is overwritten always for the convenience of test -->

<param name="Append" value="false" />

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%d %5p [%c] %m%n" />

</layout>
</appender>

<appender name="mdcFile" class="org.apache.log4j.FileAppender">

<param name="File" value="./logs/file/mdcSample.log" />

<param name="Append" value="false" />

<layout class="org.apache.log4j.PatternLayout">

<!-- MDC related patterns included -->

<param name="ConversionPattern"

value="%d %5p [%c] [%X{class} %X{method} %X{testKey}] %m%n" />

</layout>
</appender>
RollingFileAppender : For FileAppender, logs continue to remain in the designated file and therefore the file size could increase excessively and it becomes impossible to manage logs. RollingFileAppender converts big files to backup file and start logging again.

<!-- log4j-1.3alpha-8 style – package change and structurally changed to policy handling -->
<appender name="rollingFile" class="org.apache.log4j.rolling.RollingFileAppender">

<rollingPolicy class="org.apache.log4j.rolling.FixedWindowRollingPolicy">

<param name="FileNamePattern" value="./logs/rolling/rollingSample.%i.log" />

<param name="MaxIndex" value="3" />

</rollingPolicy>

<triggeringPolicy class="org.apache.log4j.rolling.SizeBasedTriggeringPolicy">

<param name="MaxFileSize" value="1000" />

</triggeringPolicy>

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%d %5p [%c] %m%n" />

</layout>
</appender>
DailyRollingFileAppender : Carry out logging to suit the designated date or conditions. You can use DailyRollingFileAppender(Layout layout, String filename, String datePattern); as a constructor to designate the time that log is rolled together with object production, or after producing as the basic constructor, use setDatePattern() to designate the time. For details, refer to apache api documents.

<appender name="dailyRollingFile" class="org.apache.log4j.DailyRollingFileAppender">

<!-- ref.) attr : FileAppender + DatePattern -->

<param name="File" value="./logs/daily/dailyRollingSample.log" />

<param name="Append" value="true" />

<!--

Follow SimpleDateFormat. ex.) .yyyy-ww : First day – every week, .yyyy-MM-dd-HH-mm

: every minute

-->

<param name="DatePattern" value=".yyyy-MM-dd-HH-mm-ss" />

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%d %5p [%c] %m%n" />

</layout>
</appender>
JDBCAppender : Appender for outputting logs to DB. You can define parameters such as Driver, URL, User, Password and Sql in the sub location. The following are property definitions for JDBCAppender in log4j.xml file.

<appender name="db" class="org.apache.log4j.jdbc.JDBCAppender">

<!-- parameter for defining JDBC Driver-->

<param name="Driver" value="oracle.jdbc.driver.OracleDriver"/>

<!-- parameter for defining DB URL -->

<param name="URL" value="jdbc:oracle:thin:@107.108.150.108:1521:ora10"/>

<!-- parameter for defining DB User-->

<param name="User" value="egovframe"/>

<!-- parameter for defining DB Password-->

<param name="Password" value="egovframe"/>

<!-- parameter for defining the query to run when leaving a log -->

<param name="Sql" value="insert into STMR_LOG (msg)

 values('%d %p [%c] - <%m>%n')"/>
</appender>
E-government extenstion Appender

EgovDBAppender :

· For Oracle, running (ojdbc-14.jar jdbc type 4 thin) getGeneratedKeys is problematic. According to useSupportsGetGeneratedKeys flag, handle it with EgovDBAppender which can be treated under the option of not using JDBC3.0 ‘ getGeneratedKeys (TEST DB : 10g r2 version)

· It extends log4j-1.3alpha-8 ‘s DB Appender. This is the Appeder that added the option of not using JDBC3.0 getGeneratedKeys, according to useSupportsGetGeneratedKeys flag.

For Oracle, when running (ojdbc-14.jar jdbc type 4 thin) getGeneratedKeys, the error of java.sql.SQLException: operation not allowed occurs. Use EgovDBAppender to set not to use useSupportsGetGeneratedKeys and ensure that DBAppender is successfully handled for Oracle.

<appender name="egovDB" class="org.apache.log4j.db.EgovDBAppender">

<!-- caller_filename, caller_class, caller_method, caller_line -->

<param name="locationInfo" value="true" />

<!—For Oracle, set the following to false or delete the option line (default: false) -->

<param name="useSupportsGetGeneratedKeys" value="false" />

<connectionSource class="org.apache.log4j.db.DriverManagerConnectionSource">

<param name="driverClass" value="${driver}" />

<param name="url" value="${dburl}" />

<param name="user" value="${username}" />

<param name="password" value="${password}" />

</connectionSource>
</appender>
EgovJDBCAppender : It has implemented Singleton. It should be also set as Annotation Bean so that dataSource bean can be injected. It extends log4j JDBCAppender, which produces connection directly based on the log4j connection setup. EgovJDBCAppender is an Appender which is extended to use after injecting Spring dataSource in an annotation format.

<appender name="pooledDB"

class="egovframework.rte.fdl.logging.db.EgovJDBCAppender">

<!-- caller_filename, caller_class, caller_method, caller_line -->

<param name="locationInfo" value="true" />

<param name="sql"

value="INSERT INTO logging_event (

sequence_number, timestamp, rendered_message,

logger_name, level_string, ndc,

thread_name, reference_flag,

caller_filename, caller_class,

caller_method, caller_line)

VALUES

('%X{sequence_number}', '%X{timestamp}', '%X{rendered_message}',

'%X{logger_name}', '%X{level_string}', '%X{ndc}',

'%X{thread_name}', '%X{reference_flag}',

'%X{caller_filename}', '%X{caller_class}',

'%X{caller_method}', '%X{caller_line}')" />
</appender>
Layout

In which format to leave logs? You can combine thread names and log time in addition to a message. There are layouts such as HTMLLayout, PatternLayout, SimpleLayout and XMLLayout. SimpleLayout and XMLLayout are also usable, but they are inconvenient when leaving a log message in your style. A layout such as PatternLayout can produce various types of log message combinations as printf does in C.

%p : The priority such as debug, info, warn, error and fatal is outputted.

%m : Logs designated by debug(), info(), warn(), error() and fatal() are outputted.

%d : The time when the logging event occurs is recorded. The output format follows what is designated in brace after %d; for example %d{HH:mm:ss, SSS}or

 %d{yyyy MMM dd HH:mm:ss, SSS}. Just use following the Java’s SimpleDateFormat .

%t : The name of the thread where the log event occurs is outputted.

%% : % symbol is outputted.

%n : Platform-dependent new-line character is outputted.

References
Apache Logging Services Project

