Test Results Excel Report Details
Summary
The function of reporting the JUnit test results in the Excel format is not an open source. It was developed in the e-government development framework development environment. Here, let’s look at Excel Report function in details
Functionality
Automatized JUnit TestCase leaves results which can be checked in Test Reporting. In Korea, there are various reports and controls prepared in Excel format and therefore in addition to Text, XML and HTML provided by default, a function that can produce the Excel format is provided as Ant Task and Maven Plug-in. 

· The test results can be provided by using Ant and Maven.

· The Excel template style can be customized for use.

· Basic template Excel file is provided.

For details on how to use, refer to Test Reporting and Test Results Excel Report. 

Structure
The structure of a code is as follows. 

Project
It is composed of three projects.

	Project name 
	Build tool 
	Description 

	egovframework-dev-tst
	Maven pom.xml
	It carries out the core task of parsing JUnit Test XML Report file and reading the template Excel file and then mapping the values to produce an Excel report file

	egovframework-dev-tst-ant
	Ant build.xml
	Use egovframework-dev-tst.jar file to provide Ant Task. 

	egovtest-maven-plugin
	Maven pom.xml
	Use egovframework-dev-tst.jar file to provide Maven Plug-in.


Package
	Project name 
	Package name 
	Description 

	egovframework-dev-tst
	egovframework.dev.tst.report.junit
	This contains the class for core tasks of parsing JUnit Test XML Report file and reading the template Excel file and then mapping the values to produce an Excel report file

	egovframework-dev-tst
	egovframework.dev.tst.report.util
	This contains Exception and Excel handling utility class

	egovframework-dev-tst-ant
	egovframework.dev.tst.report.ant
	This contains EgovJUnitExcelReportTask class (Ant Task).

	egovtest-maven-plugin
	egovframework.dev.tst.mojo
	This contains EgovJUnitExcelReportMojo (Maven Plugin).


Entire Class Structure
The organization of the entire classes are as follows. 



The relations are described as in the following. 

	Project name 
	Class 
	Description 

	egovframework-dev-tst
	ReportTestCase
	VO class that stores TestCase informaton, the smallest unit of test results.

	egovframework-dev-tst
	ReportTestSuite
	VO class that stores TestSuite information, a collection of TestCase

	egovframework-dev-tst
	TestSuiteXmlParser
	Inherit org.xml.sax.helpers.DefaultHandler and parse JUnit Test XML file, and put it in each VO class. 

	egovframework-dev-tst
	JUnitReportParser
	Use stored VO class to reorganize information for reporting (Summary, Package, TestCase Lists)

	egovframework-dev-tst
	EgovJUnitExcelReportGenerator
	Read reporting information organized by JUnitReportParser from the template Excel file to organize the list and produce Excel report file.

	egovframework-dev-tst
	EgovExcelUtil
	Utility class that uses Excel-related Apache POI in EgovJUnitExcelReportGenerator

	egovframework-dev-tst
	EgovTestException
	Exception class.

	egovframework-dev-tst
	template-junit.xls
	Default template Excel file for Excel report production

	egovframework-dev-tst-ant
	EgovJUnitExcelReportTask
	Ant Task class implemented by inheriting org.apache.tools.ant.Task

	egovframework-dev-tst-ant
	egovtest.properties
	Property file that defines Task name to be used as Ant Task

	egovtest-maven-plugin
	EgovJUnitExcelReportMojo
	Maven Plugin Goal class implemented by inheriting org.apache.maven.plugin.AbstractMojo

	egovtest-maven-plugin
	egovtest-report.properties
	Property file used in Maven Plug-in

	egovtest-maven-plugin
	META-INF/maven/lifecycle.xml
	Setup file that defines the lifecycle of Maven Plug-in


egovframework-dev-tst project
The egovframework-dev-tst project includes JUnit Test Excel Generator function. The classes are described in the following. 




✔ For description about egovframework-dev-tst project class, refer to the API documents and relevant sources. Find related information in egovframework-dev-tst project source code. 

Structure of JUnit Test XML 
Let’s discuss the structure of XML file produced after Junit test. XML file is produced in Maven and Ant, but it has the same format of TEST-[TestCase Full Name].xml. XML structure is as follows.
· testsuite : summarized information on test class.
Attributes : errors, skipped, tests, time, failures, name
· properties : information on the environment where test class is tested.

· property : value 

· testcase : information on test methods of test class.
Attributes : classname, time, name
· skipped : test method set up with @Ignore

· error : error information, if any.

EgovJUnitExcelReportGenerator

EgovJUnitExcelReportGenerator class reads the template excel file, map the test results and produce it in an Excel report. EgovExcelUtil is used to handle Excel files. This class and EgovExcelUtil class used Apache POI, an open source in order to handle Excel files. For details, refer to Apache POI Quick Guilde. In the document, EgovJUnitExcelReportGenerator class is described as standard. 

Fields

	Classification
	Input parameter  
	Description 
	Default 

	Information to get test result information from XML
	JUnitReportParser parser
	JUnit XML Parser
	N/A

	Information to get test result information from XML
	List<File> xmlReportFileList
	JUnit Test XML file Full Path list
	Treated as an error if N/A

	Information to get test result information from XML
	List<ReportTestSuite> testSuites
	Test Suite Lists
	N/A

	Information required to produce Excel file
	File templatePath
	Full Path of template report file of Excel report
	File object of ”/template-junit.xls”

	Information required to produce Excel file
	File outputDirectory
	Directory where Excel file is produced
	Treated as an error if N/A

	Information required to produce Excel file
	String outputName
	Excel report file name
	“egovtest-junit.xls”

	POI Excel file information
	HSSFWorkbook book
	POI excel file information
	N/A

	Header location information in template Excel file
	int[] summaryPosInfos
	Summary header location information
	{ 0, 0, 3 }

	Header location information in template Excel file
	int[] packagePosInfos
	Package header location information
	{ 0, 0, 7 }

	Header location information in template Excel file
	int[] listsPosInfos
	TestCase Lists header location information
	{ 1, 0, 3 }

	Constant
	IDX_SHEET = 0
IDX_COL = 1
IDX_ROW = 2 
	Index constant of array that contains the header location information of template Excel file.
sheet, column, row sequence


Constructor

The following informaton should be inputted from the constructor. 

· List<File> xmlReportFileList : JUnit Test XML file’s Full Path List

· File templatePath : template Excel file object
· File outputDirectory : file production location object
· String outputName : name of Excel file to be produced
Methods

· generateExcelReport() : main function that produces Excel files. Refer to  EgovJUnitExcelReportGenerator]]

· private void init() : issues an error message if there is information not inputted.
· constructSummaryTable() : fills up Summary Table .

· constructPackageTable(Map suitePackages) : fills up the Table per package .

· constructTestCaseListTable(Map suitePackages) : fills up the table list per TestCase .

EgovExcelUtil – Excel file handling
For Excel file handling, Apache POI’s HSSF object is used. For detailed source code, refer to EgovExcelUtil. 

· EgovExcelUtil.readExcelFile : read Excel files to produce Workbook.

· EgovExcelUtil.writeExcelFile : store in an Excel file.

· EgovExcelUtil.setCellValues : Set values in Cells.

· EgovExcelUtil.getLogicalRowNum : replace the actual row value (1-based) with logical 0-based row value.

· EgovExcelUtil.getLogicalColNum : replace the alphabets (actual column name, e.g, A to Z) with  logical 0-based column values.
✔ The two-digit columns (eg, AA ~ ZZ) have not been implemented as there is little possiboiity of use, but if required, this logic should be implemented. 
Excel File Handling Using POI
For example of using Apache POI to handle Excel files, refer to Apache POI Quick Guilde.
egovframework-dev-tst-ant Project
The EgovJUnitExcelReportTask class is as follows. For a brief source description, refer to  egovframework-dev-tst-ant project source code. 




The EgovJUnitExcelReportTask class is implemented to fit the Ant Task framework. Let’s explore the structure from the viewpoint of Ant Task. 

1. Define the structure to be used in build.xml. In other words, define the function and attribute to be inputted. – refer to Excel Report Production Sample.
· simple build.xml 

<egov-junitreport todir="${testxls.dir}">
    <fileset dir="${testreports.dir}" includes="**/TEST-*.xml" />
</egov-junitreport>
· full setting build.xml 

<egov-junitreport todir="${testxls.dir}"
                  outputname="egovtest-junit-full.xls"
                  templatepath="${basedir}/build/template-kr.xls"
                  summary="0,B,6"
                  packages="0,B,11"
                  lists="1,A,5">
    <fileset dir="${testreports.dir}"
             includes="**/TEST-*.xml" />
</egov-junitreport>
2. Produce Ant Task class that inherits org.apache.tools.ant.. 

public class EgovJUnitExcelReportTask extends Task {
3. Declare the attribute to be inputted from build.xml as Field and produce the method for input.
Declare Attribute as a variable and product a setter for automatic value setting.

/** Directory where Excel files are produced */
String todir;

 

public void setTodir(String todir) {
    this.todir = todir;

}
. . . . . .

4. Declare FileSet to be produced after receiving from fileset tag and produce the method for input.

List filesets = new ArrayList();

 

public void addFileset(FileSet fileset) {
    filesets.add(fileset);

}
5. Product functions to be handled in the public void execute() throws BuildException method.

egovtest-maven-plugin project
The EgovJUnitExcelReportMojo class is as follows. 




The EgovJUnitExcelReportMojo class is a plug-in that provides by using the artifactID called egovtest and goal called junit-xls to provide Excel reporting function to Maven.
You can produce plug-ins that provide functions to Maven, if you have some tools. For details, refer to http://maven.apache.org/plugin-developers/index.html. 

Write Maven Plugin Project 
· Select New Maven Project and then GroupID:org.apache.maven.archetypes, ArtifactID: maven-archetype-mojo as archetype to create a basic structure.

· groupID and artifactID definitons : Name as in maven-${prefix}-plugin or ${prefix}-maven-plugin format, in order to use prefix to shorten them when calling goals in the future.

· The pom.xml is defined as in the following. 


<groupId>egovframework.dev</groupId>

<artifactId>egovtest-maven-plugin</artifactId>

<packaging>maven-plugin</packaging>

<version>1.0.0</version>

<name>egovtest-maven-plugin Maven Mojo</name>

<url>http://maven.apache.org</url>
 

  . . . . . .

 



<dependency>



<groupId>org.apache.maven.shared</groupId>



<artifactId>maven-plugin-testing-harness</artifactId>



<scope>test</scope>



<version>1.1</version>


</dependency>


<dependency>



<groupId>org.apache.maven</groupId>



<artifactId>maven-plugin-api</artifactId>



<version>2.0</version>


</dependency>
Write Mojo Class
Mojo stands for Maven Old Java Object, meaning the goal of Maven2. For details, refer to http://maven.apache.org/guides/introduction/introduction-to-plugins.html.]])). To write Mojo, you have to define some in advance. 

1. Define what to set up in pom.xml that uses this plugin. Define the default value, input value and names. – refer to Excel Report Production Sample
2. Goal, phase and lifecycle to be used when using Mojo: refer to Build Lifecycle.
Mojo is defined as in the following. This section is defined as the class annotation. 

/**

 * @goal junit-xls

 * @execute phase="test" lifecycle="egovtest"

 */
3. Define the class name (put Mojo at the end.) and inherit org.apache.maven.plugin.AbstractMojo.
If you inherit this upper class, you can set up in <build>…</build> of pom.xml. 

import org.apache.maven.plugin.AbstractMojo;

 

public class EgovJUnitExcelReportMojo extends AbstractMojo {}
4. Define the parameter for input. You can use annotation to define the parameter name, default value and whether to have the required values. Therefore you don’t have to write a separate setter. 
    /**

     * Directory where Excel files are produced
     * 

     * @parameter expression="${outputDirectory}"

     *            default-value="${project.build.directory}/egovtest"

     * @required

     */
    private File outputDirectory;

 

    /**

     * Excel report file name
     * 

     * @parameter expression="${outputName}" default-value="egovtest-junit.xls"

     * @required

     */
    private String outputName;

 

    /**

     * JUnit Test results XML file location for Excel report proeuction
     * 

     * @parameter expression="${reportsDirectory}"

     *            default-value="${project.build.directory}/surefire-reports"

     */
    // private File[] reportsDirectories;
    private File reportsDirectory;

 

    /**

     * Header location information of template report file of Excel report
     * 

     * @parameter expression="${headerPosition}"

     */
    private Map headerPosition;

 

    /**

     * Full Path of template report file of Excel report
     * 

     * @parameter expression="${templatePath}"

     */
    private File templatePath;

 

    /**

     * Maven Project

     * 

     * @parameter expression="${project}"

     * @required @readonly

     */
    private MavenProject project;

5. Write main functions in the public void execute() method.

    public void execute() throws MojoExecutionException, MojoFailureException {
...

    }
Expansion Strategies
Main functional Expansion
1.  Add the class that writes main functions to the egovframework-dev-tst project. 

2. For package name, write sub package under report as in egovframework.dev.tst.report.emma.

3. Like the classes of egovframework.dev.tst.report.junit package, write VO class, XMLParser, ReportParser, ExcelReportGenerator and other classes to suit their functions.

4. Use Maven deploy to deploy up to the Nexus sever.

Add Ant Task
After creating main functions, write Ant Task if required. 

1. Add Ant Task class to the egovframework-dev-tst-ant project.

2. Under egovframework.dev.tst.report.ant package, write the class name like EgovJUnitExcelReportTask.

3. Refer to egovframework-dev-tst-ant project to write Ant Task.

Add Maven Plugin
After creating main functions, write Maven Plugin if required. 

1. Add Mojo class to the egovtest-maven-plugin project.

2. Under egovframework.dev.tst.mojo package, write the class name like EgovJUnitExcelReportMojo.

3. Refer to Write Mojo class production to write Mojo class. At this time, just redefine the goal only. The rest is the same with the existing Mojo.

TestCase Decription
This function wanted three projects to be implemented in TDD(Test-driven Development) type. Therefore regardless of whether written before or after implementation, TestCases were written for each class and the test code was written with a focus on the functions that each class handles. 
egovframework-dev-tst TestCase

The TestCases of egovframework-dev-tst project are general one that mainly uses JUnit4 and Unitils. The data used by each test code is located in the resources directory. Especially for the JUnitExcelReportGeneratorTest class, a test is included that is to see if Excel files are properly produced by using Apache POI and style and header values are properly written.  
egovframework-dev-tst-ant TestCase

The TestCase of egovframework-dev-tst-ant package is a test code to test Ant Task. Ant provide a test framework which is an extension of JUnit 3.8 for Task test. Through this, you can check if what you set up in the build.xml works properly. 

1. Write build.xml for testing. – The writing is the same with general build.xml file. Make a direct reference to the source.

2. Inerit the org.apache.tools.ant.BuildFileTest to write TestCase.

import org.apache.tools.ant.BuildFileTest;

 

public class JUnitExcelReportTaskTest extends BuildFileTest

3. Read the build.xml for testing to organize a virtual project.

public void setUp() throws Exception {
    configureProject(TestUtil.getBaseDirString(this.getClass()) + "/unit/egovtest-excel-test/build.xml");

}
4. Use various meothds defined in the org.apache.tools.ant.BuildFileTest to write a test code.

egovtest-maven-plugin TestCase

Even writing Mojo, provide a base on which the pom.xml can be tested.

1. Write the pom.xml for testing.

2. Inherit the org.apache.maven.plugin.testing.AbstractMojoTestCase class to write TestCase.

import org.apache.maven.plugin.testing.AbstractMojoTestCase;

 

public class JUnitExcelReportMojoTest extends AbstractMojoTestCase {}
3. Read the pom.xml for testing.
References
· Apache POI : http://poi.apache.org/
· Busy Developers' Guide to HSSF and XSSF Features : http://poi.apache.org/spreadsheet/quick-guide.html
· Write Custom Ant Task 

· Apache Ant Manual : http://ant.apache.org/manual/
· Introduction to Custom Ant Tasks : http://www.developer.com/java/article.php/3630721
· More on Custom Ant Tasks : http://www.developer.com/java/article.php/3636196
· Maven Home : http://maven.apache.org/
· Write Maven Plugins : http://maven.apache.org/plugin-developers/index.html
· Test Result Excel Report
