Declarative Transaction Management

Summary
The transaction can be managed declaratively instead of being handled directly in code. Transaction management using annotation and transaction management using XML definitions are supported.

Description
Annotation Transaction Management
The transaction can be managed by using annotation as in the following.

Configuration

<tx:annotation-driven transaction-manager="transactionManager" />

Insert the above <tx:annotation-driven..> in the configuration XML. For the transactionManager, refer to TransactionManager configuration

Sample Source

@Transactional

public void removeRole(Role role) throws Exception {

 this.roleDAO.removeRole(role);

}

In the above sample, you can manage the transaction by inserting @Transactional in the method for which you want to handle the transaction. You can define properties in @Transactional. The following is the properties list.

	Property
	Description
	Sample

	isolation
	Element defining the transaction’s isolation Level. DB’s Isolation Level is used if not defined.
	@Transactional(isolation=Isolation.DEFAULT)

	noRollbackFor
	Rollback is not carried out for defined exception list.
	@Transactional(noRollbackFor=NoRoleBackTx.class)

	noRollbackForClassName
	A string is used instead of a class object to define the list of the exceptions for rollback
	@Transactional(noRollbackForClassName=“NoRoleBackTx”)

	propagation
	Element to define the type of transaction propagation
	@Transactional(propagation=Propagation.REQUIRED)

	readOnly
	Handle the transaction as read-only (Default = false)
	@Transactional(readOnly = true)

	rollbackFor
	Carry out rollback for list of defined exceptions
	@Transactional(rollbackFor=RoleBackTx.class)

	rollbackForClassName
	Define the list of exceptions for which rollback is carried out by using a string instead of a class object
	@Transactional(rollbackForClassName=“RoleBackTx”)

	timeout
	If method is not completed within the specified time, rollback is carried out. If it is -1, it is no timeout (Default = -1)
	@Transactional(timeout=10)

Configurational Transaction Management

You can use XML definition to manage transactions as in the following.

Configuration

<aop:config>

 <aop:pointcut id="requiredTx" expression="execution(* egovframework.sample..impl.*Impl.*(..))"/>

 <aop:advisor advice-ref="txAdvice" pointcut-ref="requiredTx" />

</aop:config>

<tx:advice id="txAdvice" transaction-manager="transactionManager">

 <tx:attributes>

 <tx:method name="find*" read-only="true"/>

 <tx:method name="createNoRBRole" no-rollback-for="NoRoleBackTx"/>

 <tx:method name="createRBRole" rollback-for="RoleBackTx"/>

 <tx:method name="create*"/>

 </tx:attributes>

</tx:advice>

In the above, the aop:pointcut is used to specify the method to be caught and the tx:advice is used to define the rule for each. By defining this, you can manage transactions and you don’t have to specify separately in relation with transactions. As in sample XML above, you can specify following properties to <tx:method>, a sub tag of <tx:advice> for transaction management.

	Property
	Description
	Usage

	name
	Method name, wild card allowed
	name=“find*”

	isolation
	Element defining the transaction’s isolation Level. DB’s Isolation Level is used if not defined.
	isolation=“DEFAULT”

	no-rollback-for
	Rollback is not carried out for defined exception list.
	no-rollback-for=“NoRoleBackTx”

	propagation
	Element to define the type of transaction propagation
	propagation=“REQUIRED”

	read-only
	Handle the transaction as read-only (Default = false)
	read-only=“true”

	rollback-for
	Carry out rollback for list of defined exceptions
	rollback-for=“RoleBackTx”

	timeout
	If method is not completed within the specified time, rollback is carried out. If it is -1, it is no timeout (Default = -1)
	timeout=“10”

For values per property refer to schema.

Propagation Behavior and Isolation Level

Two items are commonly used in the transaction Management: Propagation and Isolation Level.

Propagation Behavior

This is used to specify the transaction’s propagation rule.

	Property name
	Definition

	PROPAGATION_MADATORY
	The method should be run within the transaction. If not, an exception occurs

	PROPAGATION_NESTED
	If in the transaction, the method can be run as a nested transaction and it can carry out commit and rollback by itself. But if not, PROPAGATION_REQUIRED property takes effect. When running in the nested transaction type, the method is not visible in the traditional transactions unless change is committed.

	PROPAGATION_NEVER
	Contrary to Manatory, the method should be run without transaction. If there is, an exception occurs.

	PROPAGATION_NOT_SUPPORTED
	The method is run without a transaction. Any uncompleted previous transaction is deferred until the method is finished.

	PROPAGATION_REQUIRED
	If there is a previous transaction, the method is run within it. If not, a new transaction is created.

	PROPAGATION_REQUIRED_NEW
	Any called method is run with its own transaction and previous transactions are deferred.

	PROPAGATION_SUPPORTS
	It doesn’t need new transactions, but if there is a previous transaction, the method is run within the transaction.

Isolation Level

This is a level that inconsistent data is allowed in a transaction. It also indicates the level that transactions are protected from the interruption by other transactions. For details, refer to here. .
	Property Name
	Description

	ISOLATION_DEFAULT
	Isolation level for individual PlatformTransactionManager

	ISOLATION_READ_COMMITTED
	Any method that uses this isolation level cannot read data that is not committed. The write lock cannot data already modified by other transactions. Therefore it is impossible for data that is not committed. This is a default value in most databases.

	ISOLATION_READ_UNCOMMITTED
	This is the lowest transaction level. Any method that uses this isolation level can read data that is not committed, but cannot find out when a new record is added.

	ISOLATION_REPEATABLE_READ
	This is a little stricter than ISOLATION_READ_COMMITED. This isolation level means that if another transaction enters new data, this new data can be retrieved.

	ISOLATION_SERIALIZABLE
	This is the highest isolation level. It is very slow as all transactions (including inquiry) have to wait every time each line is executed. Any method that uses this isolation level block other transactions until the current transaction is finished, by getting an exclusive write on data. This is most costly, but provides reliable isolation level.

References
